AD-A208 112

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

COMPUTER IMPLEMENTATION AND SIMU-
LATION OF SOME NEURAL NETWORKS USED I\
PATTERN RECOGNITION AND CLASSIFICATION

by
Mohamed H. Khaidar
March 1989

Thesis Advisor Tri T. Ha

%S =
Approved for public release; distribution is unlimited. S r I C

ELECTE §
MAY 2 6 1989

{

Unclassified

secuniy cassificanon of this page
REPORT DOCUMENTATION PAGE
Ta Rerer Securny Class:ficanon Unclassitied 16 Restricuve Markings
Za Secunty Classification Authoriy 3 Distribution Availabibty of Report
2= Dedlassification Downgrading Schedule Approved for public release: distribution is unlimited.
4 Performunz Organizanion Repert Number(s) 5 Monitoring Organization Report Number(s)
ne Name of Performing Orzanization 6b Office Symbel 7a Name of Monitoring Organization
Naval Postgraduate School . (if appiicabicr 32 Naval Postgraduate School
6c Address clnv, siaie, und ZIP code) 7b Address (ciry, staze. and ZIP code)
Monterey. CA 93943-5000 Monterev. CA 93943-5000
¥a Name of Fundinz Sponsoring Orgamization [8b Office Symbol 9 Procurement Instrument ldentificauon Number
1if apriicable)
8¢ Address 1 city, state. and ZIP code) 10 Source of Funding Numbers
Program Element No] Project No]Task No l Work Unit Accession No

1 Tatte v inciude securiny classinication) COMPUTER INMPLEMENTATION AND SIMULATION OF SOME NEURAL NET-
WORKS USED IN PATTFRN RECOGNITION AND CLASSIFICATION

12 Personal Awhor'sy Mohamed H. Khaidar

1:a Iype of Report 13t Time Covered 13 Date of Report (year. month, day) 15 Page Count
Master s Thesis From To March 1989 131

IF Supplementary Notauon The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition ot the Department of Defense or the U.S Government.

17 Cosat Codes 18 Subject Terms 1 continue on reverse if necessary and identify by block number)
Fiold Group subzroup | SNeural network. Hopfield net. Hamming net, Carpenter . Grossberg net, pattern
I Abstract rooninue on reverse {rnecessary and identiry by block numéber

{ Scarchers and scientists have been studving neural networks for many vears hoping to achieve human-like performance
in the fieids of speech and pattern recognition and classification. In this study, we are first going to ‘'make an introduction to
the ficld of antificial neural networks. then we are going to describe some of the neural nets used in the pattern recognition
and classification. A computer simulation program from an algorithinic approach for each one of these networks will be
constructed and used to implement the operation of the net. Its ability will be demonstrated in differentiating between different
patterns and even correcting a noisy pattern and recognizing it. The Hopfield network. the Hamming network and the Car-
penter Grossberg network will be individually utilized in developing an algonithm for pattern recognition and classification.
The maxamum-likelihood sequence estimation function will be mapped onto a neural network structure. The application
of this structure computations for data detection in digital communications receivers will be described. A computer simulation
program will be constructed and used to show that neural networks offer attractive implementation alternatives for MLSE.

®l 27 Distribution Avaiabiiity of Abstract 21 Abstract Security Classification
N unclassified unlimuied O same as report O DTIC users Unclassified
Zla Name of Pespenuin.e Individud 22b Telephone (include Area code) 22¢ Office Symbol
4T T. Ha (408) 3R84-269] 62Ha
DD FORMN 147352 VAR 83 APR edition may be used unul exhausted security ciassification of this pags

A e cditions aie vosolete

Unclassified

]

Approved for public release; distribution is unlimited.

Computer Implementation and Simulation of Some Neural Networks Used in Pattern
Recognition and Classification

by

Mohamed H. Khaidar .
LTJG, Roval Moroccan Navy
B.S., Roval Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author é&”:

e 1. Khaidar '

Approved by: ;}(L ; #ﬂ- .

Tri T. Ha, Thesis Advisor

K. Yomasuram

Ramakrishna Janaswamy, Second Reader

MQG%

John P. Powers, Chairman,
Department of Electrical and Computer Engineering

Laihe

Gordon E. Schacher,
Dean of Science and Engineering

ABSTRACT

Searchers and scientists have been studying neural networks for many vears hoping
to achieve human-like performance in the fields of speech and pattern recognition and
classification. In this study, we are first going to make an introduction to the field of
artificial neural networks, then we are going to describe some of ilic neurai nets used in
the pattern recognition and classification. A computer simulation program from an al-
gorithmic approach for each one of these networks will be constructed and used to im-
plement the operation of the net. Its ability will be demonscrated in differentiating
between different patterns and even correcting a noisy pattern and recognizing it. The
Hopfield network, the Hamming network and the Carpenter | Grossberg network will
be individually utilized in developing an algorithm for pattern recognition and classi-
fication.

The maximumd-likelihood sequence estimation function will be mapped onto a neural
network structure. The application of this structure computations for data detection in
digital communications receivers will be described. A computer simulation program will
be constructed and used to show that neural networks offer attractive implementation
alternatives for MLSE.

LTIC TAB]
Unannaaunced]

MY o =

|~
lk Distritution/
—

A'lll and/or
Dt Special

N
Y

I
1
i

eset For
«-o\\ Acgcg. on Fo ‘
) l NTIS GRAXI P

Justiflutton._ —ed

Availab\‘t!y Codos o

i

TABLE OF CONTENTS

L INTODU CTION e 1
A. WHATISANEURALNETWORK : i 1

B. NEURAL NETWORKS IN PATTERN RECOGNITION AND CLASSI-
FICATION 1 o e e 3

C. NEURAL NETWORKS AS MLSE RECEIVERS OF BINARY SIGNALS
IN GAUSSIAN NOISE & ..o e 5
II. THE HOPFIELD NETWORK 6
A, GENERALITIES: ... e 0
B. OPERATION OF THE HOPFIELD NETWORK: 0
C. IMPLEMENTATION OF THE HOPFIELD NETWORK: 9
D. SIMULATION OF THE HOPFIELD NETWORK: 12
III. THE HAMMING NETWORK i 19
A. GENERALITIES : ... e 19
B. OPERATION OF THE HAMMING NETWORK : 20
C. IMPLEMENTATION OF tHE HAMMING NET: 24
D. SIMULATION OF THE HAMMING NETWORK: 27
IV. THE CARPENTER ' GROSSBERG NET 49
A, GENERALITIES : L. e 49
B. IMPLEMENTATION OF THE CARPENTER * GROSSBERG NET: ... 49
C. SIMULATION OF THE CARPENTER " GROSSBERG NET: 53

V. NEURAL NETWORK AS A BINARY MAXIMUM-LIKELIHOOD SE-

QUENCE ESTIMATOR ... i 60
A. GENERALITIES : .. 60
B. MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION : 60
C. NEURAL NETWORK : ... i 63
D. MAPPING OF MLSE ONTO A NEURAL NETWORK : 66
E. NEURAL NETWORK MAXIMUM-LIKELIHOOD RECEIVER : 68

iv

F. SIMULATIONS AND RESULTS : ... 70

VI CONCLUSION L 75
A. SUMMARY OF RESULTS ot i ittt et e e e e i 75
B. NEURAL NETWORK TASKS : it 77
C. CONCLUSIONS & s 78

APPENDIX A. PROGRAMING THE HOPFIELD NET WHEN USED AS A
CLASSIFIER 1 e 80

APPENDIX B. PROGRAMING THE HAMMING NET WHEN USED AS AN
OPTIMUM CLASSIFIER @ e 88

APPENDIN C. ART AND OPERATION Or THE CARPFNTER
GROSSBERG NET & e e 95

APPENDIX D. PROGRAMING THE CARPENTER ;| GROSSBERG NET ... 98

APPENDIX E. TIIE PARAMETERS FOR THE MLSE NEURAL NETWORK 106

APPENDIX F. PROGRAMMING THE MLSE NEURAL NETWORK 108
LIST OF REFERENCES . .. s 120
INITIAL DISTRIBUTION LIST 122

LIST OF TABLES

Table 1. SIMULATIONS RESULTS FOR MLSE NEURAL NETWORK (STA-
TIONARY CHANNEL) ... o e 73

Table 2. SIMULATION RESULTS FOR MLSE NEURAL NETWORK
(TIME-VARYING CHANNEL) ... oo 74

vi

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Tigure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure 2

Figure
Figuie
Figure
Figure
Figure
Figure

Figure

LS S R

n

~1

@

12

P

LIST OF FIGURES

Neural Network and a Nodal Preprocessing Element [Ref. 1] 1
Biological Neurons and a Small Biological Neural Network [Ref. 1]?2

A taxonomy of Neural Network Classification and Clustering Models [Ref.

. 4
The hard-limiting function used in the Hopfield network 7
The Hopfield net used as a content-addressble memory [Ref. 2] 9
The Eight stored patterns i i 11
Hopfielf net response to the first input pattern 13
Hopfield net response to the second input pattern 14

. Classification response of the Hopfield net tc the second input pattern . 13
10.
11.

Hopfield net response to the third input pattern 10
Hopfield net response to the perfect input pattern 17
Feed-forward neural net used to calculate M weighted sums from the N

elements of the input pattern [Ref. 4] 21

. The iterative neural net called "maxnet” that picks the maximum of M

inputs [Ref 4] . .. 22
. The complecte neural network classifier referred to as The Hamming net
IRe . 2] e 24
The first four stored patterns 20
The rest of the 10 stored patterns 27
.. Response of the Hamming net to the first input pattern 28
. The output of the Ilamming net at t = 1 for digit "3” 29
. The output cf the Hamming net at t = 2 for digit "3" 30
. The cutput of the Hamming net at t = 3 fordigit "3" 3
The output of the Hamming net at t = 4 for digit “3” 32
The output of the Hamming net at t = S for digit “3" 33
. The output of the Hamming net at t = 6 for digit "3 34
The output of the Hamming net at t = 7 for digit "3" RN
. The output of the Hamming net at t = § for digit "3" 36
Response of the Hamming net to the second input pattern 39
". The output of the Hamming netatt = | fordigit "9" Jo

vii

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

P VLTI S S
<

[9Y)
n .L.

(V7 IR VS B Y B S |

el

40.
. Seven Tasks that Neural Networks Can Perform [Ref. 1]
42.

3 Yo ‘Vj

9 tD e

x>

=~

o

The output of the Hamming net att = 2 for digit™y"
The output of the Hamming net at t = 3 for digit 9"
. The output of the Hamming netatt = 4 fordigit 9"
The output of the Hamming net at t = 5 for digit "9”
The output of the Hamming net at t = 6 for digit 9"
The output of the Hamming netat t = 7 for digit "9"
Response of the Hamming net to the perfect input pattern

The major components of the Carpenter , Grossberg classification net

2 D
Adaptive Maximum-Likelihood Receiver [Ref. 3]
Hopfield Neural Network [Ref. 3]
Matrix of svnaptic connections [Ref. 3]
MLSE neural network {Ref. 3]o
Neural Network Based Maximum-Likelihood Receiver [Ref. 3]

The ART net search for a correct F, code. [Ref. 12]

vill

I. INTRODUCTION

A. WHAT IS A NEURAL NETWORK :

A neural network 1s a highly parallel network with many interconnections between
analog computational elements or nodes. In other words, a neural net is a svstem com-
posed of many simple processing elements operating in parallel whose function is deter-
muned by network structure. connection strengths and the processing performed at
computing elements or nodes. These nodes offer one possible solution to the problem
of obtaining the massive parallelism and computational requirements that are presumed
to be required for such preblems as pattern recognition and classification that we are
going 1o discuss in this study. Artificial neural nets are of interest primarily because theyv
may be able to emulate the speed and performance of real biological neural nets using
muny simpie slow computational elements operating in parallel to obtain high compu-

tation rates. Figure | illustrates this definition.

NEURAL NETWORK PROCESSING ELEMENT

Wi

Figure 1. Neural Network and a Nodal Preprocessing Element [Ref. 1]

A small interconnected neural network 1s presented on the left side of this figure and
one simple type of processing element or node is presented on the right side [Ref. I]. This

particular node forms the sum of N\ weighted inputs presentad on N input links and

passes the result through a nonlinearity out on one output link. In addition, the weights
on the input links can be adapted based on information concerning the correctness of
the output. Neural nets almost always include an inherent nonlinearity and require
primarily local connectivity between nodes which are almost always nonlinear, typically
analog. and mayv be slow compared to modern digital circuitry. Nodes may also include
temporal integration and other tvpes of time dependencies and also mathematical oper-
ations more complex than summation. (Ref. 1]

Architectures and processing elements used in neural network models are simplified
versions Of those observed in biological nervous syvstems. Figure 2 illustrates a number

of different tvpes of biological neurons and a small biological neural network. [Ref. 1]

CENERELLUM
. NETWORK \A\L v

AIPOLAR
NEUNON
(Netina)

T

- PYITAMID
NEUNOMN
{Cortex)

Figure 2. Biological Neurons and a Small Biological Neural Network [Ref. 1]

Characteristics of biological neural networks that aruficial neural network models
hope to provide include: [Ref. 1]
¢ Fault tolernnce to loss of a small number of computational elements.
e [nsensitivity to small variations between computational eiements.
® The need for primarily local connectivity and local learning rules.
e Real time response.

o Paratllelism.

+J

Work in neural networks is generally oriented towards achieving rather high-level
intelligent [unctions. such as pattern recognition, categorization, and associative mem-
orv. The biological knowledge of these functions is far from complete, but it is verv clear
that neurons and synapses are the fundamental devices used. It is also clear that these
devices are not programmed in the conventional manner; rather, problem-specific
knowledge 1s acquired by a learning process which alters the neuronal parameters di-
rectly. These are the two principal facts of biology that have been applied to neural
networks. Theyv are the equivalent of the transistor and of the logically structured pro-
gram in conventional computers. In addition, the algorithms for calculating the output
of a model neuron from its input and the high svnaptic connectivity used in model net-
works both derive from biological observations. [Ref. 1]

Moedern neuroscience provides a great wealth of additional information that has
only just begun to be applied to neural network modeling. This is because the path from
this more recent biological information to the desired intelligent functions is relativelv
tenuous. and the simple 1deas of neurons, synapses and learning, are themselves sur-
pricingly powerful. [Ref. 1]

The few principles of neurons, svnapses, and learning constitute the biological
foundation of most neural networks. Theyv are, of course, insufficient to specifv a net-
work with the kinds of high-level intelligent functions mentioned above. In order to
achieve these functions. the biological foundation is supplemented with cleverly invented
ideas. some drawn from other disciplines, notably phyvsics. This non-biological approach
is appropriate considering the technological goals of the research, the lack of clear al-
ternative biological solutions. and the possibility that future research will verifyv that such
imported ideas are in fact biological. However, if biological realism is not suflicientlv
maintained, neural networks will lose the ability to interact profitably with neuroscience.
[Ref. 1]

B. NEURAL NETWORKS IN PATTERN RECOGNITION AND
CLASSIFICATION :

Pattern recognition and classification is an area where neural nets have proven to
be verv successful.

A taxonomy of six important neural nets that can be used for recognition and clas-

sification of unknown patterns is presented in Figure 3.

NEURAL NET CLASSIFIERS FOR FIXED PATTERNS

BINARY INPUT CONTINUOUS-VALUED INPUT
SUPERVISED UNSUPERVISED SUPERVISED UNSUPERVISED

AN

HOPFIELD HAMMING ART 1 PERCEPTRON MULTI-LAYER RCE FEATURE MAP
NET NET PERCEPTRON CLASSIFIER

KOHONEN
SELF-ORGANIZING
FEATURE MAPS

1 t

aPTIMUM LEADER GAUSSIAN MIXTURE k-NEAREST k-MEANS
CLASSIFIER CLUSTERING CLASSIFIER NEIGHBOR CLUSTERING
ALGORITHM ALGORITHM

Figure 3. A taxonomy of Neural Network Classification and Clustering Models
[Ref. 2

This taxonomy is first divided between networks with binaryv and continuous valued
inputs. Below this. nets are divided between those trained with or without supervision.
Overall. adaptive neural networks can be trained using three types of training proce-
dures: [Ref. 1]

e Supervised training, which requires labeled training data and an external teacher.
The teacher knows the desired correct response and provides a feedback error sig-
nal after each trial. This is sometimes called reinforcement learning, or learning with
a critic when the teacher onlv indicates whether a response was correct or incorrect
and does not provide detailed error information.

e Unsupervised training, sometimes called self-organization , uses unlabeled training
data and requires no external teacher. Data is presented and internal categories or
clusters are formed which compress the amount of input data that must be proc-
essed at higher levels without losing important information. Clustering is an im-
portant component of many pattern classification procedures. It 1s sometimes
called vecror quaniization when used to convert analog inputs into a binary form
suitable for transmission or storage.

¢ Self-supervised training is used by automata which monitor performance internallv
and require no external teacher. For example. automata which learn to track a
moving spot by controlling simulated eve muscles can generate an error signal

based on the distance between the position of the spot on a simulated retina and
the center of fovea of the retina. Self-supervision is sometimes called learning-by-
doing or learning by experimeniation.

Nets trained with supervision such as the Hopfield net and perceptrons are used as
associative memories or as classifiers. The teacher provides side information or labels
that specifv the correct class for new input patterns during training. Most traditional
statistical classifiers, such as Gaussian classifiers, are trained with supervision using la-
beled training data [Ref. 2]). Nets trained without supervision, such as the Kohonen's
feature-map forming nets [Ref. 2], are used as vector quantizers or to form clusters. The
teacher does not provide these nets with any information concerning the correct class
during training. The classical K-means [Ref. 2] and the leader clustering algorithm
[Ref. 2] are trained without supervision.

In this study, we are going to focus on the use of neural net classifiers for fixed
patterns with binary input elements. We are going to implement and simulate, for dif-
ferent cases of input patterns. the supervised Hopfield net, the Hamming net which is a
neural net implementation of the optimum classifier for binary inputs, and the unsuper-

vised leader clustering algorithm of the Carpenter - Grossberg net.

C. NEURAL NETWORKS AS MLSE RECEIVERS OF BINARY SIGNALS IN
GAUSSIAN NOISE :

In this studyv, we are also going to focus on the use of neural network based
maximum-likelihood sequence estimation (MLSE) receiver structure. In particular, the
problem of detecting digital data svmbols transmitted over a time-dispersive time-
varving channel in the presence of additive Gaussian noise will be considered . We are
going to computer implement this neural network structure and simulate it for stationary
or time-varving transmission channel. Results of these simulations will be provided to
show that neural networks offer attractive implementation alternatives for MLSL
[Rel. 3]

o

II. THE HOPFIELD NETWORK

A. GENERALITIES:

In recent years, an upsurging interest in neural networks made of highly parallel
computational elements connected in patterns that are reminiscent of biological neural
nets has caught attention of researchers and scientists. In particular, more recent work
has explored the ability of a neural model described by Hopfield to serve as a content-
addressable memory (classifier). This network retrieves one of the M stored exemplars
given an input pattern which is a noisy version of one of these exemplars. A classifier
determines which of the M exemplar patterns is most similar to the noisy input pattern.

In the following study, we will focus on the classification problem because a
content-addressable memory is essentially a classifier which outputs the exemplar for the
selected class instead of an index to the class. Classification is a fundamental operation
that 1s essential to the important problem of speech and image recognition whether
achieved by biological or artificial means.

Past studies have demonstrated that the Hopfield model can be used as a content-
addressable memory for random input patterns and to classify rinary patterns created
from radar cross sections, consonants and vowels extracted from spoken words. and lines
in an image. These results demonstrate that a neural network based on the Hopficld
model can perform classification. In addition. Hopfield models have been successfully
applied to other problems. such as. the traveling salesman problem, the Analog to Dig-

ital (A-D) converter problem, and the signal decomposition problem. [Ref. 4]

B. OPERATION OF THE HOPFIELD NETWORK:

The unit used by a number of scientists is the famjl.iar binary threshold unit (Mc
Culloch-Pitts neuron) whose output is 1 if and only if ﬁ:w,/s, >0 where 0<j< M -1,
otherwise O, where N is the number of elements or bits in'=al pattern, s, is the current value
of the ith input and w, is the corresponding synaptic weight from i to unit j whose
threshold is 8,. In the McCulloch-Pitts networks, every neuron processes its Inputs to
determine a new output at each time step [Ref. §]. By contrast, a Hopfield net is a net-
work of such units subject to the updating rule: “Pick a unit at random. If the sum of
the weights on connections to other active units is positive, turn it on. Otherwise turn

it off". The operation of this network is described as we first apply input values of an

unknown pattern at time zero through the bottom threshold-logic nodes. This forces the
output of the net to match the unknown pattern at time zero:

uO=x, O<i<N-—1 Q-1

where u,(f) is the output of node i at time t and x, is element i of the input pattern taking
on the values +1 or —1. Following this initialization, the network iterates in discrete

time steps using the given equation:

N

uj(t+1)=ﬁ,[zwljy,-(z)} 0<jsM-1 2-2)

i=0
In this equation £, is a modified hard-limiter function and w; is the weight applied
to the output of node i that feeds to node j. Previousely, we have assumed the elements

of the input vector X take on values +1 and —1, respectively, for the + 1 and —1 states,

then £, is the symmetric hard-limiting function.

B +1 Lifa>0 5_ 3
Jo(x) = 1 L ifa<0 (2-3)
f-h[-:z]

!

Y

Figure 4. The hard-limiting function used in the Hopfield network

The weights are set using exemplar patterns for all stored classes.

M-l
5.3 . .
XX i#)
Z ! (2-4

0 i=j O0<ijsN-1

“;lj =

where x! is element 1 of the exemplar for pattern s. The output of each node is fed to
every other node with a weight that is symmetric, and each node does not feedback to
itself. After convergence, the output of the net 1s the final pattern represented by the
outputs of the nodes.

x’i = lul(oo) = 0'],’“")\? -] (2 - 5)

The network is considered to have converged when the outputs no longer change
on successive iterations. When the Hopfield net is used as an associative memory. the
network output after convergence is used directly as the restored memory. When used
as a classifier, the output of the Hopfield net after convergence must be compared to the
M exemplars to determine if it matches an exemplar exactly. If it does, the output is the
exemplar that best matches the output pattern. If it does not, then a “no match” result
occurs.

Hopfield first demonstrated that when th: net is trained with M exemplar patterns
using Equation 2-4, and an exemplar is presented at time zero, then the final pattern in
the net after convergence will be one of the M exemplars with a high probability if.

M<0.15N (2—-6)

The exemplars thus form stable states of the net. Hopfield's statistical results were
obtained with randomly generated exemplars. It is possible and relatively easy to select
a set of M exemplars that satisfies Equation 2-6, but does not form stable states in the
Hopfield net. These exemplars must have many elements in common. When an exemplar
for one of these patterns is presented at time zero, the network does not converge to any
of the trained exemplars. Instead, it converges to a spurious pattern never seen before.
This problem of spurious states also occurs when a noisy exemplar is presented to the
net. Even when the M exemplars are stable states of the net, there is no guarantee that
noisy versions of these exemplars passed through discrete, memoryless channels and
presented at time zero will converge to the original exemplars. Hopfield, for example,
observed that the number of spurious states found increases substantially as more ele-

ments in the input exemplar are corrupted.

The Hopfield neural network can be used as a classifier only when:

1. The exemplars for the patterns to be classified form stable states and converge to
themselves when presented at time zero as input.

tJ

A mechanism is provided to determine which of the M exemplars the net is closest
to after convergence.
The first requirement is a necessary condition for a proper classification operation.
The second is necessary because the Hopfleld net by itself is not a neural-net classifier,
but is more like a preprocessor which still requires a classification net to select which of
the M classes an output pattern is closest to .

OUTPUTS (Valld After Convergence)

~ x' X

[]
/

L[T[] /
[/ 1]/ []
A L] [
/g |
“e 'Jl e ¢ o o o pH p"-‘
XO)(‘ X"_z x"_‘

INPUTS {Applied at time Zero)

Figure 5. The Hopfield net used as a content-addressble memory [Ref. 2

It is difficult to satisfv the requirement that exemplars form stable states without
actually running the Hopfield net. In general, patterns that are more random will satisfy
this requirement more easily than patterns with many bits in common.

C. IMPLEMENTATION OF THE HOPFIELD NETWORK:
The Hoptfield network can be used either as an associative memory or as a content-
addressable memory which is described in this study. The Hopfield net shown in Figure

S. has N nodes containing hard-limiting nonlinearities and binary inputs and outputs
taking on the values +1 and —1. The output of each node is fed back to all other nodes
via weights denoted w,.

A computer algorithm to implement the operation of this net as a content-
addressable memory can be summarized in four necessary steps : [Ref. 2]

Step 1. Assign Connection weights : using Equation 2-4

Step 2. Initialize with Unknown Input Pattern : using Equation 2-1

Step 3. Iterate Until Convergence : using Equation 2-2, the process is repeated until
node outputs remain unchanged with further iterations. The node outputs then represent
the exemplar pattern that best matches the unknown input.

Step 4. Repeat by Going to Step 2

The weights are first set using Equation 2-4 and elements of the M stored exemplar
patterns as the operation algorithm of the net stated in the first step. Eight patterns
(M =28), shown in Figure 6. have been selected to simulate this algorithm and were
stored in the memory of the network.

For convenience, these eight patterns were selected to be 120 nodes (12 by 10 ma-
trices) each. The onlv limitation in the choice of N (number of nodes) 1s the time that
the net will take to iterate and converge to an output pattern or respond with a "no
match”. After assigning connection weights, an unknown input pattern is imposed on the
net at time zero by forcing the output of the net to match the unknown pattern. Then.
the net iterates in discrete time steps. The net is considered to have converged when
outputs no longer change with further iterations. The pattern specified by the node
outputs, after convergence is reached, is the net output. [Ref. 4]

Using the Hopfield net as a classifier, the output will be compared to every one of
the M class patterns. If the output matches an exemplar, the classification is terminated
and the output is that class whose exemplar best matches the output pattern. If 1t does

not, then a "no match” result occurs.

10

e e e
e a =

.« v . »
. s . L]
. -
. -
" 82w ean a
a s a8 -
« oW B .
. + A ®
amsEn
a s s aas

11

The Eight stored patterns

Figure 6.

]

D. SIMULATION OF THE HOPFIELD NETWORK:

Using the Fortran program provided in Appendix A, we simulated the operation of
the Hopfield net when used as an addressable-content memory (classifier) for different
inputs. For convenience and simplicity, the M class patterns were first introduced to the
net as a matrix of N by M (120 by 8), where each vector colunm of 120 nodes represents
the 12 by 10 matrix representation of the class. The first vector colunm represents the
pattern of a ‘0’, the second of a '1’, the third of a '2’, the fourth of a 3’ the fifth of a 'd",
the sixth of a '6’, the seventh of the block pattern representation of the ‘point’ and the
eight and last of a '9". The elements of each class pattern take on the values of +1 for
a " black pixel "and -1 fora .~

The behavior of the network is simulated first by presenting the pattern of digit ‘3’
as an input pattern. To make it more interesting, a corrupted version of this pattern is
achieved by randomly reversing each bit, of the matrix representation of digit 3, inde-
pendently from +1 to —1 and vice versa with a probability of 0.25. Implementing this
pattern is equivalent to receiving noise corrupted bits of a digit in a noisy communi-
cation channcl.

The corrupted input pattern was then imposed on the net at time zero. After the

first iteration. the net still can not tell which class the input pattern corresponds to. As
more 1t :rations took place, the output becomes more and more like the correct exemplar
pattern of the digit 3, as vou can see in this simulation result provided in Figure 7.

Then, at the third iteration. the net has converged and the output. as can be seen.
is indeed the pattern of the digit 3. Only three iterations were sufficient for the net to
converge to the corrected digit and to recognize it as a 3. Now, we tried to see if we
present a corrupted pattern of another digit, how many iterations will be used to con-
verge to the correct result? Will it take only three iterations to do so ? The input pattern
that we used was of digit ‘9" and using the same procedure we randomly reversed each
bit from + 1 to —1 and vice versa with the same probability and error distribution as
before. The response of the network to this input pattern is illustrated in Figures 8§ and
9.

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (s) REPLACES A 1 AND EVERY (.) REPLACES A -1:

-1-1-11 1 1 1-1-11 . . . = s s s . . =
-1 1-1 1 1 1 1 1 11 . ® , = ® 8 8§ ®§ ® &8
1-1-1-11=-1-1 1-=-1-1 s ., . s, . = .
1 -1-1-1-1-1-1-11-1 »
-1 -1-1-1-1 1=-1-11-1 .
-1-1 1-1 111 1-1n-=-1 . . s s s ® 8
l1-1-1-1 1 1=1=1=1-1 s . . . s L,
1 -1-1 1-1-1-1-1 11 A e
-1 -1-1-1-1-1 11 12-=-1 e e e e . . = s .
-1 -1-1 1-1-1-1 1-1-1 T
11 1 1 1-11-1-1-1 s s 3 a = . = .
-1-1-1 11 1-1 1-11 . . . s = = _ = _ 3

THE OUTPUT O THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE
UNKNOWN INPUT PATTERN PRESENTED. THE PATTERN ON THE LEFT CORRESPONDS
TO THE OUTPUT AFTER THE 1ST ITERATION WHILE THE PATTERN IN THE MIDDLE
CORRESPONDS TO THE OUTPUT AFTER THE 2ND ITERATION, THE PATTERN ON THE
RIGHT CORRESPONDS TO THE OUTPUT AFTER THE 3RD ITERATION.

[[s

T, = 8 ¥ 5 8 8 1 . . 4 a8 § 8 8 & [}

[] .] . I | T e

. s, [[|

. (] s [B | =
. s s 5 8 . s s, | F]

(] . [. [] s, [I | .,

. B s [] . []

.. [| . L] . []

. = [] . . . s 8

s & 8 = [. a s LI I I |
[]] 2 8 3

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.

\F'TER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT THREE.

Figure 7. Hopfielf net response to the first input pattern

13

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-

POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (») REPLACES A 1 AND EVERY () REPLACES A -1:

-1 -1 -1 11 1-1 s . 2 s 8 | u -

-1 1 l -1 1 1 = s

1-1-1-1- 1 -1

1-1-1-1 1 -1

-1 -1-1-1 -1 -1

-1 -1 1-1 1 1

1-1-1-1 1 -1-1

-1-1-1 1-1-1-11

-1 -1-1-1-1-11-1

-1 -1-1 1-1-1-1-1

1 1-1-1 1-11-1

-1-1 1-1 1 1-1 1

[

N e = W STy N
[
(-
[
'
" .wem-
»
a
-
a B B 8 0 @
n ® * B &8 5 B uW°

—
e I e e Y = ¥ sy

[o Y Sy S P P RN Py
a

THE OUTPUT OF THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE

UNKNOWN INPUT PATTERN PRESENTED. THE PATTERN ON THE LEFT CORRESPONDS
TO THE OUTPUT AFTER THE 1ST ITERATION WHILE THE PATTERN ON THE RIGHT
CORRESPONDS TO THE OUTPUT AFTER THE 2ND ITERATION.

s , 8 8 8 _, ® s a2 s 85 8 8
s 5§ , 8 & 8 8 8 [| [I |
L] . . on . u [s 8 &8
. . s s [} [| [}
. . [. PO | | B I s 8
. (] s 5 8 [| s s 8 [|
a ., [| LI I [|
. [] . . 88 s 8 .
. . I | [| [|
. (] [[
[|] s
s, 88 , 8 8 B 8

THE OUTPUT OF THE HOPFIELD NETWORK AFTER THE 3RD ITERATION IS PRESE-
NTED ON THE LEFT WHILE THE PATTERN ON THE RIGHT CORRESPONDS TO THE
OUTPUT AFTER THE 4TH ITERATION.

Figure 8. Hopfield net response to the second input pattern

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES 1S THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.

AFTER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT NINE.

Figure 9. Classification response of the Hopfield net to the second input pattern

Then. using the same probability of error and distribution of errors in the input
pattern as for digit '3°, we conclude from the result of this simulation that the number
of iterations nieeded to get the right answer depends on how close the input pattern was
to a stored one. This mav explain why there is a difference in the number of iterations
taken by the net to converge to the right answer. We may sayv that the corrupted input
pattern of digit ‘3" was closer to the perfect exemplar for the 3" than the noise disturbed
input pattern of digit ‘9" is to the perfect ‘9" using the same noise corrupted bits distrib-
ution and the same probability of error as for digit "3".

Using the noise disturbed pattern for digit ‘9" as input to the net, but now with dif-
ferent error distribution and the same probability of error (0.25), the simulation and re-
sults were as shown in Figure 10.

The result shows perfectly that the number of iterations that the network needs to
converge depends on the error distribution in the input pattern and not on the proba-
bility of error.

Now as a conclusion after all these simulations and results, one could say that when
imposing a perfect input pattern on the net, the network will take only one iteration to
recognize it as a stored one. To verifv this finding, we take the pattern of digit 2" and
present it as the input pattern to the net at time zero without making any change in its
elements (a perfect exemplar of digit '2°). The response of the net to this perfect input

pattern 1s presented in Figure 11.

15

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (s) REPLACES A 1 AND EVERY (.) REPLACES A -1:

-1 1 1-1 1 1 1-11%-1 LI = .
-1=-1-1 1 1 1-1 1 11 . . ® = ®§ , ®» = &8
1 1 -1-1-1-1-1-1-=-1-1 LI ...
-1 -1-1-1 1 1-1 111 . s s @
-1-1 1-1 1 1-1-11-1 . L] s

-1 -1-1 1-1 1 1 1 1 1 . T s« =z &=
1 1-1-1 1-1-1 1 1%-=-1 . » . . s

-1 -1 -1 -1-1-1-=-1-1-1-=1

-1 -1-1 1-1-1-1-1 11 . . . = m
1 1 1-1-1-1-1-1 11 = = . . s
-1 -1-1-1-1 1-1 1 1 1 . s s u
=1 -1-1-1 11 1 1 1 1 . e = 3 &

THE OUPUT OF THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE
UNKNOWN INPUT PATTERN PRESENTED. THE PATTERN ON THE LEFT CORRESPONDS
TO THE OUTPUT AFTER THE 1ST ITERATION WHILE THE PATTERN IN THE MIDDLE
CORRESPONDS TO THE OUTPUT AFTER THE 2ND ITERATION, THE PATTERN ON THE
RIGHT CORRESPONDS TO THE OUTPUT AFTER THE 3RD ITERATION.

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.

AFTER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT NINE.

Figure 10. Hopfield net response to the third input pattern

16

THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (») REPLACES A 1 AND EVERY (.) REPLACES -1:

b

1 1 1 1 1 1 1 1-1-1 s = 5 s
11 11 1 11 1-1-=-1 s s 85 3
-1 -1-1-1-1-111-1-1 ..
-1 ~-1-1-1-1-1 1 1-1-1
-1-1-1-1-1-1 1 1-1-1
11 1 1 1 1-1-1
11111 1-1-1
-1 -1-1-1-1-1-1-1
-1 -1-1-1-1-1-1-1
-1 -1-1-1-1-1-1-1
1 1 1 1 1 1-1-1
11 1 1 1 1-1-1

. b e b e
W el

THE OUTPUT OF THE HOPFIELD NETWORK LOOKS LIKE THE FOLLOWING FOR THE
UNKNOWN INPUT PATTERN PRESENTED. THE PATTERN SHOWN HERE IS THE NET'S
OUTPUT AFTER THE 1ST ITERATION.

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

AT THIS POINT, FURTHER ITERATIONS WON'T MAKE ANY CHANGE ON THE OUTPUT
OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES IS THE
NET'S OCUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE INPUT AS AN
ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR.

AFTER CLASSIFICATION, THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES
BEST THE PATTERN OF DIGIT TwO.

Figure 11. Hopfield net response to the perfect input pattern

The result was as we thought; it took the net only one iteration to recognize the
input pattern as onc of the M class stored patterns. From these simulations we can
conclude that the Hopfield network when used as a classifier can be useful in a com-
munication receiver where its task is to recognize the received bits, also to correct the
corrupted ones and to recognize them. However, the Hopfield net is onlyv iterating be-
tween an input pattern and the ones that are already stored in the memory of the net.
The number of these patterns (M) is a imitation to the proper operation of the net as
a classifier because of the convergence condition demonstrated bv Hopfield, which states
that the net will converge with high probability if 3 <0.15N. A non-learning network
i1s what the Hopfield net is, compared to other networks that we are going to describe
in the following chapters. However. it has an important advantage over the others, its
ability to recognize patterns even in noisy environement as long as the original pattern

was stored In its memory prior to its use, otherwise, a "'no match” will occur.

IlIl. THE HAMMING NETWORK

A. GENERALITIES :

The Hopfield net, as we have seen, is often tested on problems of pattern recognition
and classification by taking an input exemplar and reversing its bits randomly with a
certain probability. The classifier in this study will calculate the Hamming distance to
the exemplar of each class and select that class with the minimum Hamming distance to
the specified input pattern. The Hamming distance is the number of bits in the input
which do not match the corresponding exemplar bits. A net, which will be called the
Hamming net, implements this algorithm using neural net component. Instead of cal-
culating the Hamming distance directly, we will calculate N minus the Hamming dis-
tance and maximize this function, where N 1s the number of elements or bits in a pattern
representation. [Ref.]

N munus the Hamming distance can be calculated from a weighted sum of the N\
elements of the input vector. If the elements of the input pattern to the net take on the

values + 1 and —1 for the respective states, then

N—]
N Naw = g + D wyx G-1)
i=0
where,
x/ ;
wy = 5~ (3-2)
and
N

Here x; is the value of element 1 of the exemplar for class }. When all elements in the
input vector match an exemplar exactly, each element in the sum of Equation 3-1 adds
%, and adding ¢, given in Equation 3-3 gives a total of N. Whenever an element in the
input pattern does not match the corresponding element in the exemplar, the prior total

is decremented by | as required. [Ref. 4]

19

On the other hand, when elements of the input pattern x take on the values 0 and
+ 1 for the —1 and + 1 states, respectively, N minus the Hamming distance can be cal-

culated from:

N-1

N—Man=c+ Dowx (3 - 4)
i=0
where,
+1 ifx = +1
wy = S (-5
-1 i =0
and
AN—1
G=N =54 G -6
i=0

In the above equation, N} represents the number of zero elements in the exemplar
for class j. When all elements in the input pattern match an exemplar exactly, the sum
in Equation 3-4 adds up to the number of positive input elements. This is added to the
number of zero input elements results in N, as desired. The sum is reduced by one
whenever a zero input element that matches an exemplar becomes positive, and when-
ever a positive input element that matches an exemplar becomes zero. [Ref. 4]

Here we have made a brief introduction to the Hamming net used as a classifier. as
the net that calculates the Hamming distance to exemplars for all classes and then select
that class which produces the minimum Hamming distance to the input pattern. Also ,
we have introduced two kinds of input patterns, one which elements take on +1 and
—1 values, the other +1 and 0 values, for the +1 and —1 states, respectivelv. Its con-
sequences on the calculation of N minus the Hamming distance were also introduced.
The next paragraph will discuss the Hamming net in further detail and illustrate how the

selection of the minimum is made.

B. OPERATION OF THE HAMMING NETWORK :
Two neural nets that are logically required to implement an optimum classifier for

binary patterns will be assembled to form the Hamming net. One net forms the weighted

20

sum to calculate quantities related to the likelihood of the different classes. The second
net picks the maximum. [Ref. 4]

The first net that forms weighted sums is presented in Figure 12. An input pattern
X is applied at the bottom of this net and an output pattern y is produced at the top.

Figure 12. Feed-forward neural net used to calculate M weighted sums from the N

elements of the input pattern [Ref. 4]

The first laver of nodes sends values of the input pattern to the links feeding the
second laver. The second laver of nodes uses nonlinear threshold logic elements to sum
weighted values of the inputs and add internal offsets [Ref. 4]. Output values from the

second laver are

N-1

-~
<

where,

o ifa>0
f,(a)={0 Fago 6-9)

In these equations. f{(o) is a nonlinear function that models the nonlinearity inherent
in a biological neuron. ¢, is an internal offset associated with each threshold logic node,
and w, are positive or negative weights associated with the links [Ref. 4].

A number of different nets can be used to pick the maximum value from the y, out-
puts of the feed-forward neural net shown in Figure 12. In situations where it is only
important to know if the input matches a stored state very closely, it is sufficient to
identify those second-level nodes in Figure 12, with output values that exceed a specified
threshold. This can be performed by modifving the constant ¢, added in Equation 3-7
such that only the output of those nodes corresponding to closely matching stored states

are positive. [Ref. 4]

outputs

M-2 Z M1

/

[l 1]/ \]/
\ A/ \)

/ y/

n, u' o o o o o Mors er
Yo Y, Yz Yne

Figure 13. The iterative neural net called “maxnet” that picks the maximum of M
inputs [Ref. 4]

In the more general situation, a net must select the maximum over the My, values.
There are many different neural net structures which perform this task. A less complex
net that uses feedback connections to pick the maximum output y, (referred to as a
maxnet) is presented in Figure 13. [Ref. 4]

Although this net is similar in structure to the Hopfield net (Figure), it uses
threshold-logic nodes, relative to the threshold-logic nonlinear function described in
Equation 3-8, rather than hard-limiting nodes and feeds the output of each node back
to its input instead of disallowing this feedback path. The maxnct is a fully connected
net made up of only M threshold logic nodes with internal thresholds set to zero. Input
values are applied at time zero through the input nodes on the bottom of Figure 13. This

initializes node outputs for each node at time zero [4,(0)] to the input values :

w0y = g j= 0l M=2,1M—1 (3-9)

The network then iterates to find the maximum using the following equation :

wlr+1) = f,[uj(;) - sZui(z)} 0<i,j<M—1 (3 - 10)

i/

In this equation. f; is the threshold logic function described in Equation 3-8. Each
node inhibits all other nodes with a value equal to the node’s output multiplied by a
small negative weight (¢) which 1s less than —:7 Each node also feeds back to itself with
unity gain. After convergence, only that output node corresponding to the maximum
input will have a nonzero value. This value will generally be less than the original time
zero value of that node. The output values of the net are thus simply the node output

values after convergence :

5= o) Jj=01,.,M=2M-1 (3-11)

The maxnet will converge and find the maximum input when

1
Wy <T\{_—l_ 3-12)

By convergence, we mean that the output nodes stop changing in time and only the
output of one node corresponding to the maximum input is positive. Applving the

threshold logic function f; on each one of these output nodes will result in only one

r

23

nonzero output node, the previous positive one, and a zero value for all the others. The
nonzero node corresponds to that exemplar class which best matches the input pattern.

OUTPUT (Valid Alter MAXNET Converges)
Yo Yi YmM2 Yma

MAXNET
PICKS
MAXIMUM

CALCULATE
MATCHING
SCORES

INPUT {Applied At Time Zor0)

Figure 14. The complete neural network classifier referred to as The Hamming net
[Ref. 2]

The block diagram of the complete Hamming net, when used as a classifier. 1s
completed by putting together the feed-forward neural net referred to as the lower sub-
net (calculates the weighted sums) , and the maxnet referred to as the upper subnet (se-
lects the node with the maximum output value). The complete Hamming net 1s then as

shown in Figure 14.

C. IMPLEMENTATION OF THE HAMMING NET :
The operation algorithm of the Hamming net as a classifier can be described in four
steps which the net must follow to classify a certain input pattern. The four steps of the

algorithm are : [Ref. 2]

Step 1. Assign connection Weights and Offsets
In the lower subnet :

x!
wy = -5‘- 0<isN-1,0<jsM-1 3-13)
and
0, = X o0<j<M-1 (3-14
In the upper subnet :
{+l, k=1
1, = 315
T e k# L oe< =7, OskISM-I G0

In these equations, w;, is the connection weight from input i to node j in the lower
subnet and 6 is the threshold in that node. The connection weight from node k to node
1 in the upper subnet is ¢, and all threshoids in this subnet are zero. x/ is element i of

exemplar j .

Step 2. Initialize with Unknown Input Pattern
N1
i=0

In this equation, u(7) is the output of node j in the upper subnet at time t, x, is ele-
ment i of the input. and f; is the threshold logic nonlinearity. It is assumed that the

maximum input to this nonlinearity never causes the output to saturate.

Step 3. Iterate Until Convergence : using Equation 3-10, this process is repeated until

convergence occurs after which the output of only one node remains positive.
Step 4. Repeat by Going to Step 2

First. weights and thresholds are set using the N elements of each one of the M

stored patterns, as shown in Step 1 of the above algorithm. Then a binary input pattern

L

]

with N bits (N = 120 elements in this implementation) is presented at the bottom of the
Hamming net at time zero. The N bits of the input pattern were chosen to take on the
values +1 and —1 for +1 and —1 states, respectively. This input pattern must be pre-
sented long enough to allow the lower subnet of the net to calculate matching scores
which are going to be fed to the upper subnet (maxnet) allowing it to settle and initialize
its outputs. These matching scores are equal to N minus the Hamming distances be-
tween the input and each one of the M exemplar patterns. This operation is done by
using the equation given in Step 2 of the previous algorithm. The input is then removed
and the maxnet iterates until convergence using the iteration formula 3-10. By conver-
gence, we mean that the output of only one node, corresponding to one of the M stored
patterns, is a nonzero value. Classification is then terminated and the nonzero maxnet
output node will point out the selected class that best matches the input pattern.

The M stored patterns used in the implementation of the Hamming net when used
as a classifier. were choosen to be similar to those used in the previous chapter; however,
here we are using 10 exemplar patterns (M = 10) instead of 8 used earlier. The 10 stored
patterns (Figures 13 and 16) consist of 120 nodes (\N=120) each as in the previous
chapter (12 by 10 representation matrices). These 10 classes were clioosen to represent

all digits.

Figure 15. The first four stored patterns

[[] « " 2 5 8 8 %0
[} [I] s 8 5 8 0 8 2 &
e L L
. LI L
LI . " s L
a8 5 2 8 8 20 a8 2 9 9 a s
s s 8 &8 8 s * = 5 8 o 8 0 @
....... LI] e
....... .. e
....... e e
,,,,,,, s » ¢ 3 & 5 8 0 2
,,,,,,, [} . LI T B I
s = 8 8 8 8 a9 8 8 88
a 5 & 8 8 1 & 8 8 B 0 B
L A) LI
L a s
L T T) L
T T T T T [I
[T T T O [I }
[I | LR & el e e e a e
[] L I s =
s » R, L . .y e e e e [I]
T T T T []
2 & & 2 = =8 » "

" 8 8 8 0 @ s 8 3 8 8 @
R 8 8 2 0 8 s & & & 8 8
[| . a8 a8 O I
[I] a . [I] s
[I] L I [I] s .
e« 3 u s 5 3 s s 8 @& 8 &
= a2 3 85 8 9 = 8 8 8 B &
@ T T R T L
& 8 P A " s
. e T T T LA
"« 5 8 8 3 "= a9 8 &8
" 8 3 ® a5 2 5 u 8 » &

Figure 16. The rest of the 10 stored patterns

D. SIMULATION OF THE HAMMING NETWORK:

Using the Fortran program provided in Appendix B. we simulated the operation of
the Hamming net when it is used as a classifier. The input pattern is choosen to be the
digit '3" pattern which in the same fashion as for the Hopfield net. reversing its bits
randomly from + 1 to —1 and vice versa with the same probability (0.23).

The behavior of the Hamming net is illustrated in the output of the simulation

program provided in Figure 17.

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (s) REPLACES A 1 AND EVERY (.) REPLACES A -1:

-1-1-11 11 1-1-1 1
-1 1-11 1 1 1 1 1 1
1-1-1-1 1-1-1 1-1-1
1-1-1-1-1-1-1-1 1-1 . .
-1 -1-1-1-11-1-1 1-1 . .
-1-1 1-1 1 1 1 1-1-1 . .
1-1t-1-111-1-1-1-1
-1 -1-1 1-1-1-1-1 11
-1 -1-1-1-1-1 11 1-1
-1-1-1 1-1-1-11-=-1-1 .
1111 1-1 1-1-1-1] .
-17-1-1 1 1 1-1 1-11 =

THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM REPRESENTS THE
OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIOCNS:

UMB. OF ITERATIONS= 1 2 3 4 5 6 7 8 9 10
FOR CLASS O0: 59 5 0 0 0 o 0 0 0 0
FOR CLASS 1: 73 20 5 0 0 0 0 0 0 0
FOR CLASS 2: 71 18 3 0 0 0 0 0 0 0
FOR CLASS 3: 89 38 25 1 9 18 7 6 6 16
FOR CLASS 4: 63 9 0 0 0 0 0 0 0 0
FOR CLASS 5: 75 22 7 1 0 0 0 0 0 0
FOR CLASS 6: 65 12 0 0 0 0 0 0 0 0
FOR CLASS 7: 75 22 7 1 0 0 0 0 0 0
FOR CLASS 8: 79 27 13 8 5 3 1 0 0 0
FOR CLASS 9: 77 25 11 6 3 1 0 0 0 0

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK
CORRESPONDS TO THE PATTERN STORED OF THE CLASS THREE.

Figure 17. Response of the Hamming net to the first input pattern

For more clarity, we are going to illustrate the behavior of the Hamming net in the
following plots. Each plot corresponds to the output of the net at the corresponding time
step from time zero until its convergence.

- ©

- ©

CLASS

T T T T T -e
001 (o], oe 0L 09 09 or
J0TVA 3AON LNd.LN0 SSVID

Figure 18. The output of the Hamming net at t = 1 for digit “3”

Lo

or

T;f} 0'3 Orl
A0TVA JAON LNdLNO SSYIO

CLASS

Figure 19.

The output of the Hamming net at t = 2 for digit “3”

30

- ©

CLASS

oy

oy

018 O‘Z Oll
ANTVA JAON LNdLNO SSVTI

Figure 20.

The output of the Hamming net at t = 3 for digit 3"

- ©

sl

- o

- o

oy 018 OIZ OrI
AN'TVA JAON LNdLNO SSYTD

(]

CLASS

Figure 21. The output of the Hamming net at t = 4 for digit 73"

19

S W

st

-

- 0N

oy OIC OIZ Olt
A(ITVA ZUON L1dLNO SSVID

CLASS

Figure 22. The output of the Hamming net at t = 5 for digit “3”

- ©

| =

- N

o

0'8 OIZ 0'1
JNTVA JAON LNdLNO SSYTI

1 9
Figure 23.

The output of the Hamming net at t = 6 for digit “3”

L

ad

syl

- o

or og 0z ot
dNTVA JAON LNdLNO SSYT10

CLASS

Figure 24. The output of the Hamming net at t = 7 for digit “3”

35

- ©

i

CLASS

oy 018 (—)'Z (;l 0
ANTVA ZAON LNdLNO SSY1D

Figure 25. The output of the Hamming net at t = 8 for digit 73"

As vou can see, the net has effectively converged to the correct class corresponding

to digit ‘3" and only § iterations were required to do so. By convergence. we mean that

the output nodes stop changing in time steps, and only the output of one node is a
nonzero value. In our case, it was the output node of class 3. We say that the net has
converged to the class that best matches the input pattern which is given by the position
of the nonzero output node within the others. Further iterations will not change the
output node values.

The proof of convergence depends primarily on the fact the inhibition to the node
containing the maximum value, in our case it was the node corresponding to class "3,
is alwavs less than the inhibition to other nodes. This explains the fact that all output
node values were decreasing on successive time steps. The output node values of those
classes that are close to the input pattern were decreasing in time, but not in the same
fashion as the classes that are totally different from the input pattern which were de-
creasing faster. At convergence, the inhibition to the node with the maximum value re-
duces to zero. [Ref. 4]

inkib(t) =)ty () G—17)

i#f

where, inhib(r) is the second term of the right hand side of Equation 3-10, p(z) is the
output of node i at time t and ¢, is the inhibition weight between nodes in the upper

subnet and it’s given by the following formula,

+1, i=j
;= o (3-18)
-t i#j e< =, 0<iygsM-1

Node 3 corresponds to the maximum input, then on the first iteration, the inhibition
to this node was less than the inhibition to all other nodes. This follows because all node
outputs are positive and the sum of all outputs, excluding one in Equation 3-17, will be
minimum when the maximum is excluded. Node 3 thus remains the maximum after the
first iteration. By induction, it will remain the maximum over all iterations and it re-
sponded as expected. [Ref. 4]

The remainder of the proof of convergence depends on demonstrating that the out-
put of node 3 is never driven to zero, but the outputs of all other nodes are. When
Equation 3-12 is satisfied, inhib (1) is always less than the average value of all other node
outputs. The inhibition to node 3 will thus be less than the average of the output of all

nodes. Whenever a maximum exists, this inhibition will always be less than the current

37

output of node 3 because the maximum of a set of positive numbers is always greater
than the average. The output of node 3 will not be driven to zero while any other nodes
have nonzero outputs. After all other node outputs are driven to zero, the inhibition to
node 3 drops to zero, and the output of node 3 remains constant. The output of all other
nodes will always be driven to zero because the inhibition to these nodes remains posi-
tive on all iterations and approaches a positive constant as time increases. In practice,
the maxnet will still converge and find the maximum when each weight w, is set to
ﬁ plus a small random component. This forces the net to find a maximum when
the inputs to all nodes are identical. As a matter of fact, this discussion can be general-
ized to all input patterns. [Ref. 4]

Then, we presented another input pattern which is of the digit “9”. This pattern was
noise corrupted in similar fashion as for digit “3”. The purpose of this simulation was to
see if the net will behave as discussed earlier and if the number of iterations necessary
for a successful convergence is function of the input pattern and how much noise dis-
turbed it is. So, for the noisy pattern of digit "9, the response of the net is as provided
in Figure 20.

For more clarity, we are going to illustrate the response of the net in the following
graphs for successive iterations. Each plot corresponds to the response of the net at the
corresponding number of iterations, where the class out >ut node values are decreasing
from an iteration to the next. By inhibition, all of them will be driven to zero, some faster
than others, except for the class output node corresponding to that to the stored
exemplar that best matches the unknown input pattern. Then, this output node value
will remain constant throughout future iterations while the zero valued output nodes

will remain at zero.

38

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
) REPLACES A -1:

WHERE EVERY (s) REPLACES A 1 AND EVERY (.

-1 1
-1 -1
1 1
-1 -1
-1 -1
-1 -1

1 1
-1 -1
-1 -1
1 1
-1 -1
-1 -1

1-1 11
1 1 1
1-1-1-1
1-1 11
1 -1 11
1 1-1 1
1 -1 1
1-1-1
1 1-1
1-1-1
1 -1-1
1-1 11

-1
-1
-1

1 -1

1 -1

1
1
1
1
1
1
1
1

1 -1

1

1
1
1
1
1
1
1
1
1
1
1

1
1
-1
1
1
1
1
-1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM REPRESENTS THE
OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIONS:

i

NCMB. OF ITERATIONS= 1 2 3 b 5 6 7 8 9
FOR CLASS O: 48 0 0 0 0 0 0 0 0
FOR CLASS 1: 58 10 0 0 0 0 0 0 0
FOR CLASS 2: 60 12 0 0 0 0 0 0 0
FOR CLASS 3: 74 27 15 9 5 2 0 0 0
FOR CLASS 4: 72 25 12 6 2 0 0 0 0
FOR CLASS 5: 72 25 12 6 2 0 0 0 0
FOR CLASS 6: 52 4 0 0 0 0 0 0 0
FOR CLASS 7: 66 19) 0 0 0 0 0 0
FOR CLASS 8: 58 10 0 0 0 0 0 0 0
FOR CLASS 9: 80 43 34 30 28 27 26 26 26

CLASSIFICATION OF THE UNKNOWN INPUT PATTERN:

THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK
CORRESPONDS TO THE PATTERN STORED OF THE CLASS NINE.

[or}
[N eRoNoNoloNoNoNeNe] [e]

[

Figure 26. Response of the Hamming net to the second input pattern

39

- ©

-~

001

T

06

0'9 OIL 0‘9
dNTYA JAON LAdLNO SSVTO

1

09

oy

Figure 27.

The output of the Hamming net at t = 1 for digit ”9”

40

|
e
- ©
-
/9]
w2
«
o
- O

Lﬂ

-

T

09 oy 018 OTZ Oll 0
A0TYA FAON 10dL1NO SSYIO

Figure 28. The output of the Hamming net at t = 2 for digit "9~

4]

CLASS

oy orc Or?.’ 0’I
A1TVA FAON LNdLNO SSYTD

Figure 29. The output of the Hamming net at t = 3 for digit 9"

-~

- ©

oy

Orﬁ OIZ 0‘1
A'IVA GUON LAdLAO SSVTD

CLASS

Figure 30.

The output of the Hamming net at t = 4 for digit “9”

43

- ©

oy

OIS OIZ O'X
JOTVA JAON LNdLNO SSY10

Figure 31.

The output of the Hamming net at t = 5 for digit “9”

44

CLASS

or

0'9 OTZ 0'l
dNTVA JAON LNdLNO SSYIO

1 9
Figure 32.

The output of the Hamming net at t = 6 for digit 79"

i

CLASS

1] 4 OTG 0’3 OTI 0
dNTVA FAON LNJLNO SSVTD

Figure 33. The output of the Hamming net at t = 7 for digit “9~

These graphs have proven once more. the net’s mechanism of convergence described

earlier. After 7 iterations, the net has effectivelv converged to the correct pattern of digit

46

"9”, which output node was the only nonzero node while all the others were driven to
zero by the convergence process of the Hamming net. Then, seven iterations were used
to converge to digit “9” in comparison to eight to recognize digit “3”. These simulations
were for noise-corrupted input patterns, now we resimulated the net but this time using

the perfect pattern of digit “2". The response of the net is provided in Figure 34.

THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE LEFT AS IM-
POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR REPRESENTATION
WHERE EVERY (=) REPLACES A 1 AND EVERY (.) REPLACES A -1:

1 1 1 1 1 1 1 1 -1 -1 L]]] B | "
1 11 1 1 1 1 1~-1-1 = s s = s s
-1 -1 --1-1-1 1 1-1-1 e e e = =
-1 -1-1-1-1-1 1 1 -1 -1 s []
-1 -1-1-1-1-1 1 1-1-1 .o . s s
111 1 1 1 1 1-1-1 = a = ' R B |
111 1 1 1 1 1-1-1 s s n s = s =
1 1-1-1-1-1-1-1-1-1 L

1 1-1-1-1-1-1-1-1-1 s =

i 1-1-1-1-1-1-1-1-1 " 9 .
111 1 1 1 1 1-1-1 . = L
111 1 1 1 1 1-1-1 . =] s .

THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM REPRESENTS THE
QUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN NUMBER
OF ITERATIONS:

NUMB. OF ITERATIONS= 1 2 3 4 5 6 7 8 9 10
FOR CLASS O: 56 0 0 0 0 0 0 0 0 0
FCR CLASS 1: 66 9 0 0 0 0 0 0 0 0
FOR CLASS 2: 120 67 54 49 47 46 45 45 45 45
FOR CLASS 3: 84 28 12 4 0 0 0 0 0 0
FOR CLASS 4: 64 7 0 0 0 0 0 0 0 0
FOR CLASS 5: 84 28 12 4 0 0 0 0 0 0
FOR CLASS 6: 90 35 20 12 7 3 0 0 0 0
rCR CLASS 7: 80 24 8 0 0 0 0 0 0 0
FOR CLASS 8: 78 22 6 0 0 0 0 0 0 0
FOR CLASS 9: 54 0 0 0 0 0 0 0 0 0

LASSIFICATION OF THE UNKNOWN INPUT PATTERN:

- THEN, THE DISTURBED UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK
CORRESPONDS TO THE PATTERN STORED OF THE CLASS TWO.

Figure 34. Response of the Hamming net to the perfect input pattern

47

Even for the perfect input pattern of digit “2”, the net took 7 iterations to success-
fullv converge to the correct response. So, the number of iterations is definitly not
function of the input pattern and how noise disturbed it is but with how many stored
patterns it shares many similarities (almost same distribution of +1 and —1). The num-
ber of iterations necessarv for a successful convergence depends on the output node
values at the first iteration. The bigger magnitude these values have, the more similar
their respective patterns are to the input and the more iterations will be necessary to
drive them to zero by inhibition except for the correct output node.

In our last simulation with digit “2” as a perfect input pattern, after the fourth iter-
ation, only those output nodes corresponding to class “2” and class “6” were the only
nonzero valued nodes. We can conclude, from this, that the input pattern, after the
fourth iteration, is very close to the patterns of digit “6” and “2”, but more closer to "2”
than "6” because of its higher output node value. The network took two more iterations
to drive the output node of the “6” to zero. Then, the inhibition to node "2” drops to zero
and the value of its output node remains constant. The input pattern 1s said to be digit
“2" pattern.

This discussion can be generalized to explain the previous behavior of the network
to digit 3" and digit "9” as input patterns. In all cases. the output node with the higher
magnitude, after the first iteration is completed, is always the correct node but the con-

vergence mechanism of the net is not to make decisions at this stage.

48

IV. THE CARPENTER / GROSSBERG NET

A. GENERALITIES :

Classified as a self-organizing neural net, the Carpenter /| Grossberg net self-
organizes and self-stabilizes its recognition codes in response to arbitrary sequences of
binary input patterns. Top-down attentional and matching mechanisms are critical in
self-stabilizing the code learning process. The architecture embodies a parallel search
scheme which updates itself adaptively as the learning process proceeds. After the
learning process has self-stabilized, the search process is automatically disengaged.
Thereafter, input patterns directly access their recognition codes without any search.
Thus, recognition time does not grow as a function of code complexity.

A novel input pattern can directly access a category if it shares invariant properties
with the set of familiar exemplars of that category. These invariant properties emerge in
the form of learned critical feature patterns, or prototypes. The architecture possesses a
context-sensitive self-scaling property which enables its emergent critical feature patterns
to form. They detect and remember statistically predictive configurations of featural el-
ements which are derived from the set of all input patterns that are experienced. Four
tvpes of attentional processes (priming, gain control, vigilance, and intermodal compe-
tition) are mechanistically characterized. Top-down priming and gain control are needed
for code matching and self-stabilization. Attentional vigilance determines how good the
learned categories will be. If vigilance increases due to an environmental disconfirma-
tion. then the system automatically searches for and learns the best recognition catego-
ries. [Ref. 6]

This chapter develops a theorv of how recognition codes are self-organized by a
class of neural networks whose qualitative features have been used to analyse data about
speech perception, word recognition and recall, visual perception, olfactorv coding,
evoked potentials, thalamocortical interactions, attentional modulation of critical ter-
mination. and amnesia. These networks comprise the adaptive resonance theory (ART)

characterized as a system of ordinary differential equations.

B. IMPLEMENTATION OF THE CARPENTER / GROSSBERG NET :
The neural network that will be discussed in this chapter is known as an ART sys-
tem, after the adaptive resonance theory introduced by Grossberg [Ref. 7]. see Appendix

C. Recently, ART networks have been further studied and their dvnamic properties

49

have been derived in a series of theorems. These theorems predict both the order of
search, as a function of the learning history of the net, and the asvmptotic category
structure self-organized by an arbitrary binary input sequence.

The operation of the ART system discussed in Appendix C will be used to develop
a neural net known as the Carpenter ;| Grossberg net, using neural net components,
which will form clusters and is trained without supervision. The net can learn from input
patterns and later differentiate between new and stored (learned) patterns. If the new and
unknown input pattern is classified as a previously learned pattern at a certain level of
vigilance, it will be ignored, but if it is not, it will be added as a new pattern by the net.
This process is repeated for all input patterns. The number of learned patterns thus
grows with time and depends strongly on the level of vigilance (threshold) used to com-
pare input patterns to the already stored ones.

The operation of the Carpenter | Grossberg net which forms clusters (learned pat-
terns) and is trained without supervision is given in eight steps : [Ref. 2]

Step 1. Initialization

1,0) = 1 (-1
b0 = T3 -2

A<isN—-1 ,0<j<M—1

Setp, 0O0<p<l.

In these equations b,(r) is the bottom-up and 7,(¢) is the top-down connection weight
between input node i and output node j at time t as shown in Figure 35. These weights
define the exemplar specified by output node j. The fraction p is the vigilance threshold

which indicates how close an input must be to a stored exemplar to match.

Step 2. Apply New Input

Step 3. Compute Matching Scores

P

—1

I
(=

50

In this equation w4, is the output of node j and «x, is element i of the input pattern

which can be 0 or 1.

QUTPUT
Yo yl
X X4 X2
INPUT

Figure 33. The major components of the Carpenter / Grossberg classification net
[Ref. 2]

Step 4. Select Best Matching Exemplar

u; =max {u} 4=
! J
This is performed using extensive lateral inhibition as in the maxnet.

Step 5. Vigilance Test

1= D x (4-3)
i=0
N~1

ITEN = Y 1x, (4= 6)

T X
s =

T > p? 4-7

If YES then GO TO Step 7, otherwise GO TO Step 6
Step 6. Disable Best Matching Exemplar
The output of the best matching node selected in Step 4 is temporarily set to zero

and no longer takes part in the maximization of Step 4. Then go to Step 3.

Step 7. Adapt Best Matching Exemplar

L+ 1) = 10 x (4-8)
1) = = — (4-9)
0.5 +) 1:(0x,
=0

Step 8. Repeat by Going to Step 2
(First enable any nodes disabled in Step 6)

After initialization of the net and presentation of an unknown input pattern,
matching scores are computed using feed-forward connections. The node corresponding
to the exemplar with the highest matching score is selected using lateral inhibition
among the output nodes as in the maxnet (Hamming net). where each output node
corresponds to a stored exemplar. This net differs from the Hamming net in that feed-
back connections are provided from the output nodes to the input nodes and elements
of both inputs and stored exemplars take on only the values 0 and 1.

The selected exemplar, from the highest matching score, is then compared to the
input by computing the ratio of the dot product of the input and the best matching
exemplar (number of 1 bits in common) divided by the number of 1 bits in the input. If
the ratio is greater than a threshold value (vigilance) which was set at the initialization
of the net (Step 1 of the algorithm), then the input is considered to be similar to the best
matching exemplar and that exemplar is updated by performing a logical AND opera-
tion between its bits and those in the input. On the other hand, if the ratio is less than
the vigilance threshold, the output node with the highest matching score is temporarily

52

set to zero, disabled by provided mechanisms. The same input pattern is presented again
to the net for another test. The cvcle continues until one stored exemplar matches the
input or this pattern is considered to be different from all stored exemplars and it is
added as a new one. Generally, when the first test fails the input is a new exemplar. Each
additional exemplar requires one output node and 2N\ connections to compute matching
scores.

The vigilance threshold, which ranges between 0.0 and 1.0, determines how close a
new pattern must be to a stored exemplar in order to be similar. A value near 1.0 means
a close match 1s necessary and smaller values accept a poorer match.

C. SIMULATION OF THE CARPENTER / GROSSBERG NET :

Using the Fortran program provided in Appendix D, we simulated the behavior of
this net. For this simulation, a vigilance threshold of 0.9 was choosen, which means that
an input pattern must be very close to a stored exemplar to be considered similar. The
patterns used in this simulation were of the letters “C”, “"E”, “F” and were choosen to be
of 64 element representation (matrices of 8 by 8). In all the figures provided in this
discussion, we have made a black pixel to correspond to an element of value 1 and the
white pixel for the value of 0. The actual input patterns used are provided in Appendix
D.

Initially, the storage memory of the net was empty. To train this net, an input pat-
tern representing the letter “C” was presented first and it was automatically stored as the
net starts to learn. Now internal connection weights of the net are altered to form an
internal exemplar that is identical to the letter "C” and we have the first output node of
the net. In the samc [{ashion. every learned pattern will be stored as 2\ connection
weights and one output node is added to the net. These 2\ connections weights will

form an internal exemplar for the respective pattern stored.

53

In the storage memory of the net, we have only one stored exemplar :

After, an input pattern representation of the letter "E” was applied. The response

of the net to this input was :

BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTERN STORED. THIS INPUT PATTERN IS

THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR PATTERN.

Here "E” was compared to “C” as described in Step 5 of the clustering algorithm of
the net and since the ratio was less than the vigilance threshold we now have two stored

exemplars.

For a new input pattern representation of the letter "F”, the response of the net was
the same as for “"E”. Here the input pattern was compared to both stored exemplars, but
at all imes the ratio was less than the vigilance threshold. The input pattern of "F" is

then added as a new exemplar leading to three stored patterns.

54

At this point, we will try something different. We will present a noisy version of the
letter “F” with a missing black pixel in the upper edge as shown in Appendix D. The

reaction of the net was ;

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTERN IS CONSIDERED TO
MATCH A STORED PATTERN WHICH IS UPDATED BY
PERFORMING A LOGICAL 'AND' OPERATION BETWEEN

ITS BITS AND THOSE OF THE INPUT PATTERN, AND

THE NEW UPDATED PATTERN WILL LOOK LIKE:

In this part of the simulation, the input pattern is found to match the stored
exemplar of "F” because the ratio of the vigilance test was found greater than the vigi-
lance value, 1.e.. the two patterns have many elements in common. The result was a
degraded "F” due to the AND operation performed during the updating. Now in the
memory of the net we still have three patterns with some changes in the pattern of the
letter "F” :

Presenting an even more noisier version of the pattern of "F” given in Appendix D,

the reaction of the net was :

BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTERN STORED. THIS INPUT PATTERN IS

THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR.

Here the input pattern was compared first to the stored pattern of the noisy “F”, but

the ratio was less than the vigilance value. Then it was compared to the other stored

wh
N

exemplars, one in each cycle, but the ratio was still less than the vigilance value. The
input pattern is then considered different from existing exemplars and it is added as a
new one in the memory of the net. At this point, we have four stored patterns :

These results illustrate the inaccuracies of this net in a noisy environement. For a
vigilance value of 0.9, we took a stored pattern and changed some of its elements simu-
lating the presence of small amount of noise in the channel. Then, presenting it again
as an input pattern has made the net take it as a new pattern to be stored with the cor-
rect version. Besides the noise, the value of the vigilance test can also alter the behavior
of the net as we are going to show. Using the same input pattern sequence as before,
we are going to simulate the clustering algorithm of the net, but this time with 0.7 as the
vigilance threshold. Starting by presenting the pattern of the letter “C” as the input, the
net automatically stored it in its empty memory as the net staits to learn. Now internal
connections weights of the net are altered to form an internal exemplar that 1s identical
to the letter "C”.

In the storage memory of the net, we have only one stored exemplar :

Then, an input pattern representing the letter "E” was presented to net. The response
of the net was:

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTERN IS CONSIDERED

TO MATCH A STORED PATTERN WHICH IS UPDATED BY
PERFORMING A LOGICAL 'AND' OPERATION BFTWEEN

ITS BITS AND THOSE OF THE INPUT PATTERN, AND

56

THE NEW UPDATED PATTERN WILL LOOK LIKE:

Here, comparing the input pattern “E” to the stored “C” as described in Step 5 of the
clustering algorithm. The ratio was found greater than the vigilance value (0.7). The re-
sult was a degraded “C”, as shown, due to the AND operation performed on its bits
during the updating. In the memory of the net, the degraded pattern of "C” is stored
instead of the initial pattern. Now we still have only one stored pattern.

For the pattern of the letter “F" as an input, the net responded with the following

message:

BECAUSE, THE RATIO WAS LESS THAN THE VIGILANCE THRESHOLD
THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM
ANY EXEMPLAR PATTERN STORED. THIS INPUT PATTERN IS

THEN STORED WITH THE OTHERS AS A NEW EXEMPLAR.

Afler comparing the input pattern of “F” to the stored and degraded pattern of “C”
as in the vigilance test, the ratio was found to be less than the vigilance threshold which

results in another stored pattern :

Now, we are going to present the noise corrupted pattern of “F”. The net’s response
was:

BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE
THRESHOLD, THE INPUT PATTERN IS CONSIDERED
TO MATCH A STORED PATTERN WHICH IS UPDATED BY

W
~1

PERFORMING A LOGICAL 'AND' OPERATION BETWEEN
ITS BITS AND THOSE OF THE INPUT PATTERN, AND
THE NEW UPDATED PATTERN WILL LOOK LIKE:

The matching pattern was of the leiter “F”. At this point, checking the net’s memory

will reveal the storage of the two patterns :

Presenting a more corrupted pattern 0. "F”, the response of the net was as before.
The input pattern was found similar to the first corrupted version of “F” (the ratio was
greater than the vigilance threshold). The stored pattern of the corrupted “F” was again
more disturbed after the AND operation was performed between its bits and the input
pattern. The result. once again, replaced the previous version of the corrupted "F" in the

memory of the net :

The results of the two simulations show clearly how the noise and the vigilance
threshold can afTect the performance of the Carpenter / Grossberg net. We have seen the
net performing well for perfect input patterns and when adding a small amount of noise

it behaves totally different. With no noise, a lower vigilance value can make the net

58

consider two different patterns ro be similar. We have seen this in the second simulation
when we have presented the pattern “E”, which was mistakenly considered similar to “C”
for 0.7 vigilance. On the other hand, a higher vigilance threshold can make the net con-
sider two patterns, which are most similar, to be different. Thus, this net should not be
used in a noisy channel with a high vigilance value; otherwise, the number of stored
patterns will grow rapidly in time as input patterns are continuously presented until all
available nodes are used up. A proportional adaptation of the vigilance threshold to the
existing noise in the channel can make the net to perform perfectly during training and

testing.

V. NEURAL NETWORK AS A BINARY MAXIMUM-LIKELIHOOD
SEQUENCE ESTIMATOR

A. GENERALITIES :

Bandwidth-efficient data transmission over telephone and radio channels is signif-
icantly improved by the use of adaptive equalization to compensate for the time
dispersion introduced by the channel.

During the last two decades, a steady research eftert has produced a rich body of
theory in the field of adaptive equalization and the more general field of adaptive re-
ceivers. From this work, a class of nonlinear receivers referred to as maximum-likelithood
sequence estimation receivers have emerged as front-runners with respect to error rate
performance. However, the high degree of computational complexity of the optimal
maximum-likelirood receivers has prohibited their use in many applications. It will be
shown that neural networks can be used to implement the maximum-likelihood sequence
estimation and that the networks offer an attractive alternative for implementation.
[Ref. 3]

Intersymbol interfirence caused by the bandlimiting effect of the channel 1s re-
viewed. A maximum-likelihood receiver designed to detect data symbols in the presence
of intersvmbol interference and additive Gaussian noise is considered and the theory
behind maximum-likelihood sequence estimation is reviewed.

The maximum likelihood sequence estimation function is mapped onto a neural
network structure. A neural network based receiver structure will be described which can
be used for stationary or time-varving channels. The MLSE neural network will be sim-

ulated on the Mainframe and some results of its simulation will be presented.

B. MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION :
Consider a baseband synchronous data communication link used to transmit a se-

quence of numbers called data or information symbols, denoted by
{coy Qyv Gy Gy o)

The symbols are independent and can, with equal probability, be either +1 or —1.

Let M be the number of data svmbols in a transmitted sequence and assume

60)

transmussion starts at time t = 0 and ends at time t = MT. The receiver will observe the
signal ¥(t) during the time interval starting at t = 0 and ending at r = ¢,, where

tf>(M+ LT

where L is the channel memory in units of T.
Denote the time inteval 0 — 7, by /. By its definition, a maximum-likelihood re-

ceiver determines {q

n

} as the best estimate sequence {a,} that maximizes the likelihood

function p[¥(1), ¢t € I | {a,}] given by
-1 b 1
Pt e 1 a)] ~ exp § e | 7] Tl) (6 K= 0 nty | {and) iy (S - 1
: 0 Y0
where K;!(r) is the inverse of the noise autocovariance function K (¢) and
M
nel {a) = y(0) = O aphe = KD) (5-2)
k=1

where h(t) is the impulse response of the matched filter used in the adaptive maximum-

likelihood receivers (Figure 36). Rearranging Equation 5-2,

M
A = D aghlt = KT) + n(c | {ay) (5-3)
k=1

A block diagram of an adaptive maximume-likelihood receiver for the data trans-
mission model described by Equation 3-3 is illustrated in Figure 36.

v(t) _s “'ﬁi?"ﬁi-ﬁ'i” z(1) } {z,]) o MAXIMUM-LIKELINOOD e)
AL T SEQUENCE ESTIMATOR
"
A

' i’s
\ COLFFICIENT —]
} o/ ESTIMATOR
nT' {v.)

Figure 36. Adaptive Maximum-Likelihood Receiver [Ref. 3]

61

The impulse response of the matched filter in Figure 36, designed to improve the

signal-to-noise ratio, is given by
gl) = h(=0)* K. '(1) . (5-4)

where * denotes the convolution function. Substituting Equation 5-2 into Equation 5-1,

expanding the terms in the braces and considering only terms that depend on {a,}, vields

M M M
pLn(t) | {a)] ~ exp {Zz 4z =)) a5 ak} (5-5)
i=1

i=1 k=1
where,
7, = fjﬁ(tl — nD) K™ (1, — p) () dr di, 5-96)
Iad
5 = f J h(ty = DK (4 = 1) hir, — KT)dn, iy

IR 5

A 5-7)
and

The quantities z, and s, can be interpreted as sample values taken at the output of
the matched filter, where z, is obtained by sampling the output z(t) of the matched filter
once everv T seconds and s, s account for the combined response of the transmission
channel and matched filter. The s,'s are symmetric and s, = O for |/| > L. [Ref. §]

Under maximume-likelihood criteria, the estimated sequence is that for which ex-
pression 5-3 is maximized. Since 5-5 is monotonically increasing function of the term in

braces, given by

M M M
‘];‘.]({an}) = ZZ az; — ZZai Si—k Qg (5 - 9)
i=1

i=1 k=]

maximizing Equation 5-3 is equivalent to maximizing Equation $-9. The notation
Jul{a.}) indicates the cost function for the sequence q,, @,, ..., ay. Equation 5-9 will be
referred to as the MLSE cost function. [Ref. 3]

The estimation procedure using direct evaluation of the MLSE cost function re-
quires that Equation 5-9 be evaluated for all the possible sequences of length M that can
be formed from data symbols +1 and —1. Thus Equation 5-9 must be evaluated 2¥
times to obtain an estimate of the sequence {a,}. To perform the estimate in real time,
which is required by most communication links, the 2¥ computations of Equation 5-9
must be performed in MT seconds. In most cases, direct evaluation of t..: MLSE cost
function is too computation intensive to be of practical use. [Ref. 3]

The number of computations required can be greatly reduced by the use of the
Viterbi algorithm [Refs. 8.9], which requires on the order of 2¢-! multiply-and-add oper-

ations during each signaling inteval T.

C. NEURAL NETWORK::

Any neural network has, as discussed before, parallel input channels, parallel output
channels and a large amount of interconnections between the neural processing ele-
ments. Figure 37 illustrates the general structure of a Hopfield neural network. The
processing elements (nodes), or neurons, are modelled as amplifiers in conjunction with
feedback circuits comprised of wires, resistors and capacitors organized so as to model
the most basic computational features of neurons, namely axons, dendritic arborization
and svnapses connecting the different neurons. {Ref. 10]

The model considered here for implementation of the MLSE neural network is that
due to Hopfield and Tank [Ref. 3].

The amplifiers have sigmoid monotonic input-output relations, as shown in Figure
37. The function (1) = g [u(r)] which characterizes this nonlinear input-output relation
describes the output voltage v(t) due to an input voltage u(t). The time constants of the
amplifiers are assumed negligible. However, like the input impedance caused by the cell
membrane in a biological neuron, each amplifier j has an input resistor p, leading to a
reference ground and an input capacitor ¢,. These components partially define the time
constants of the neurons and provide for integrative analog summation of the svnaptic
input current from other neurons in the network.

In order to provide for both excitatory and inhibitory synaptic connections between
neurons while using conventional electrical components, each amplifier is given two

outputs, a normal (+) output and an inverted (—) output.

63

inputs
f i

Iy Ia
o e
‘V” o o 0
Wi)
Was e o o
- L « s o
o o

-— outputs __ o

_Nhnmlllom.‘__ 4
s reglon ,

1 SV W U

"" u(t) . v(t) |
—_t -

— — amplifier

_— h) 0., U
o) ~u(t)
nnn-inverting inverting
output output

- 0 -+ u(t)
v(t) = glu(t)]

Figure 37. Hopfield Neural Network [Ref. 3]

The minimum and maximum outputs of the normal amplifier are taken as 0 and L.

while the inverted output has corresponding values of 0 and —1. A synapse between

64

neurons is defined by a conductance w, which connects one of the two outputs of am-

plifier j to the input of amplifier i. This connection is made bv a resistor of value

R = 1
v I, |

normal (+) output of amplifier j. For an inhibitory synapse (i, < 0), it is connected to

. If the synapse is excitatory (w, > 0), this resistor is connected to the

the inverted (—) output of amplifier j. The matrix w, defines the connectivity among the
neurons. The net input current to any neuron i (and hence the input voltage u,) is the
sum of the currents flowing through the set of resistors connecting its input to the out-
puts of the other neurons. [Ref. 9]

The set of differential equations describing the dynamics of the neural network

shown in Figure 37 with M neurons are given by

R.

{

M
d {1
u ,Tn,,‘ w - B o u (5= 10)
1\=

where v(r) = g [u(s)] and R, is the parallel combination of p, and the R, ’s, and C, is the

capacitance of amplifier j.

M

1.\ 1
=T+Z—R; i=1 .., M (5—11)

J=1

4
&

]

For simplicity, we assume that g[.] = g[.]. R, = R and C, = C, independent of i.

: I .
Dividing Equation 3-10 by C and redefining w, = % and [, = —C’-, the equations of
motion become :
M
dudt) uf1) .
— = D) — = + L i=1.,M (5-12)

k=1

where t = RC is the time constant of the circuit. [Ref. 9]

In the Hopfield net operation, it was shown that the equations of motion for a net-
work with symmetric connections (u, = w,) always lead to a convergence to stable
states, in which the outputs of all neurons remain constant. Also, when the width of the
amplifier gain curve in Figure 37 is narrow, the stable states of a neural network com-

prised of M neurons are the local minima of the quantity

N
t

M

E= -0l -+

i=1 =1k

v(1) wy vi(0) (5-13)

M M
=1

When high amplifier gain is used, the minima occur only at the corners of an M-
dimensional hyvpercube defined by v, = +1 or —1.

D. MAPPING OF MLSE ONTO A NEURAL NETWORK :
Maximizing the MLSE cost function described by Equation 5-9 is equivalent to

minimizing the following expression

M M M
Tlah) = = DY 2az+) > asa (5 14)
=1

i=1 k=]

where g,'s (of only + 1 and —1) values which minimize Equation 5-14 are unknown. The
z’s and s_,’s are known. Comparing Equations 5-13 and 5-14 and equating vanables

as follows ,
2z =L, “2s = owy, oq = w(0)

reveals that the two expressions are identical under these substitutions. From Equation

5.7, we recall that s, = s_. Therefore,

. — 2] — e — .
Wi = =28 = =28 = wy

which satisfies the svnaptic interconnection symmetry condition. The svnaptic intercon-
nections for the neural network are determined by the coeflicients which describe the
combined response of the channel and matched filter. Let W denote a matrix of svnaptic
connections w,. Then the svnaptic connection matrix W for the network is given in
Figure 38.

The externally supplied input current for each neuron, /, is determined by observa-
tion z,, 1 <i/< M. With the input voltage u(7) initiallv at zero, the input sequence is
applied to the network. After the network settles the estimated sequence {&n} is read from
the output of the neural amplifiers. A diagram of the MLSE neural network is shown in
Figure 39. [Ref. 3]

66

[—200 =28y --o —24, 0 0 0 0 .. 0]
=21y —2ag -1a —2ay, 0 0 0 ‘e 0
—2!; —'231 —260 —251 s —28L 0 0 v 0
W= .)) .
L] LR 0 0 0 0 —-2,,1 cen _2.1 _,2’0 L aexar
Figure 38. Mlatrix of synaptic connections [Ref. 3]
21;“ 225(_| 22]
: NEURAL NETWORIK
. INTERCONNECTIONS: Wiy's
—

Figure 39. MLSE neural network [Ref. 3]

This development assumed that the transmission channel is stationary. which im-
plies that the s’s describing the combined channel and matched filter response do not
change with time. Often. this is an unrealistic assumption. [Ref. 3]

The MLSE cost function given by Equation 3-14 can be written for the time-varving

channel as

67

M M M
Jyl{a,}) = — ZZ az + ZZai s,~(_l_)k ay (5-195)
i=1

i=] k=1

From Appendix E and using Equation 5-15, the parameters for the MLSE neural
network are given by [Ref. 3]

) k
25, =1, =28, = —(s2 + &) = wi, @ =) (5 — 16)

E. NEURAL NETWORK MAXIMUM-LIKELIHOOD RECEIVER:

A block diagram of the adaptive maximum-likelihood receiver incorporating the
neural network for MLSE is shown in Figure 40. Registers R,, R,, ..., R, form a shift
register used to store the M observations. With all amplifier inputs u,, i = 1, ..., M,
inmtally at zero, switches S, i = 1, ..., M, are simultaneously closed and the network
1s allowed to settle. The output of each neural amplifier is applied to the input of a de-
cision device which outputs a +1 or —1 for a positive or negative input respectively.
Once the network has settled, the estimated sequence is read at the output of the deci-
sion devices as shown in Figure 39. [Ref. 3]

In some cases, the length of the network, M, will be considerably less than the total
number of data symbols in a transmitted sequence. For example, suppose the transmit-
ted sequence consists of K x M data symbols. one approach is to load the first set of M
observations and estimate the corresponding data symbols. After the estimate is ob-
tained. the second set of observations would be loaded and the second set of data sym-
bols estimated. The procedure would be performed a total of K times to obtain an
estimate of the entire transmitted sequence. The primary problem with this approach is
that it does not take into account the truncation of the observation sequence. [Ref. 3]

The effect of the truncation can be described by considering the role of the obser-
vations in the estimation. Let z, 1 < k < M, denote an observation applied to the ex-
ternal input of neural amplifier k, where z* is the /* observation from the received

sequence.

63

208

v

Itas

Y

F’L]Ell llh‘—l e R I I)]{l

3

matcip |20 \l {z)

L (M=1)

2
sSwW,
Tas Ing-1 Iy
——»
: NEURAL NETWORK .
o INTERCONNECTIONS: Wa's

IRV A v

J)
_]" ... —

fn dna 8, (M=)
]
- COEFFICIENT
l____, ESTIMATOR
{yn}
nT 'Si’l ‘(sl—).'
+
W
NEGATE

Figure 40. Neural Network Based Maximum-Likelihood Receiver [Ref. 3]

Since the channel memory is L. all information concerning the identity of data

svmbol a is contained in observations: [Ref. 3]

69

(k=1) _(k=L+1) (k+L)
ZieL v Zimfal v ey Zigg

for k in the interval
L < k<M-L+1 5-17)

All the observations containing information about the data symbol estimated by
neural amplifier k are available to the network. On the other hand, for k in the intervals

l<k<L & M-L+1l<k<s M (5—-18)

some of the observations containing information about the data symbol estimated by
neural amplifier k arc not available to the network. Therefore, one would expect more
errors to occur in estimates a® for K in the interval given by Equation 5-18 than in the
interval given by Equation 5-17. [Ref. 3]

This problem can be solved by overlapping the sequences used for each estimation
iteration. Assume a set of M observations have been received and the network has
produced a set of M data symbol estimates. Rather than accept all M estimates as valid.
only estimates from neurons L+ 1 through M-1 are taken as valid. This, of course, cor-
responds to the estimates based on complete information about the symbols “eing esti-
mated. From this set of observations, the observations in shift registers M, M-1, ..., p+1
are saved, where 2L < p < M — 1. A new set of p observations are shifted into the shift
registers and the network performs another estimation. Essentially, this procedure
amounts to shifting in p rather than M new observations after each estimation cycle.
[Ref. 3]

F. SIMULATIONS AND RESULTS :

The neural network based MLSE receiver structure was implemented and simulated
on the Mainframe. The program used is a self-driving program, provided as Appendix
F. The network was simulated by numerically solving the set of M differential equations
of Equation 5-12. The differential equations solver used in the simulation was the sub-
routine DGEAR of the IMSL library.

Then the M output values of DGEAR subroutine were passed through their re-
spective neural amplifiers. The input-output function of the neural amplifiers was im-

plemented as a hyperbolic tangent function.

wWi) = — tanh[Gu(n)] i=1, .., M (5-19)

70

where G is the gain constant. Increasing G increases the slope of the input-output curve
in the transition region and reduces the width of the region (see Figure 37) [Ref. 3].
The transmission channel impulse response is modeled by a finite response square

cosine function given by [Ref. 10]

Fla) cosz-ETi 7] < -30—
h(t, 0) = { ° . (5-20)
0, 1] > —2—°-

where the multiplicativeterm F(2) is included to model the time-varying channel. For the
stationary channel simulations, F(o) i1s taken as 1. Channel interference also includes
additive White Gaussian noise n(t). The combined response of the channel and matched
filter is then [Ref. 10]

F(2) 1 (2,,,) 3T, .
— < (To—=1t1) | I +—=-cos + sinr |1 TS 1] < T,
s(r, a.)={ PAY) {(0)[2 \ Ty 4 (o) G 021)

0 lt] > T,

where .\, denotes the single-sided spectral density of the additive White Gaussian noise
n(t). and 7, is the time duration of the intersymbol interference. Equations 5-20 and 5-21
are sampled at intervals of T seconds, where T is the bit duration, to generate the L +
1 discrete time channel coeflicients (h(2)’s) and 2L + 1 discrete time coeflicients de-
scribing the combined response of the channel and matched filter (s(e)’s). VLSI imple-
mentation using sequential processing techniques have been reported for data rates up

to 2469 buts second {Ref. 3]. The channel memory L is given by
L= — (5—122)

: . T, e .
Actually. L 1s the largest iuteger less than or equal to —79- but in this stmulation we

are going to take L as 7
Using the coeflicients generated by sampling Equations 5-20 and 5-21 and assuming
a stationary channel (F(x) = 1) and baseband transmission model, the received samples

(+'s) are generated by the expression

M

yi = Zak W + 1 =1, .., M (5-23)
ke

where 3 replaces v(t) at t = 4T, A, , replaces h(t) at t = (i - k)T and », 1s a sample of the
additive White Gaussian noise n(t) at t = 1. For this simulation,the noise samples are
generated by a Gaussian random number generator GGNML of the IMSL hibrary. The
data symbols (a.'s) which are +1 and —1, are generated with equal probability using a
uniform random number generator GGUID of the IMSL library. Then, the observations

(z,'s) are gencrated by the expression

M
o, = Zv# My =1, .., M (5 =24y
ko

The s,'¢ and -'s generated by the Lquations 5-23 and 5-24 are substituted into
Lquation 5-10 to define the parameters of the neural network. A gain fuctor G of 10000
was used for the sumulations because of the very small output numbers of the differential
cquations solver DGEAR. Luach simulation started with zero imtial conditions and the
computations were stopped after simulation of St seconds (5 time constants). The esti-
mated seguence, the Mooutputs of the neural amphfiers (Figure 39), was then compared
to the transnutted sequence and the total number of errors were recorded. Also, the es-
tmated sequence was compared to an estimate obtained by direct ~omputation of the
MLESE cost function and the number of data ssmbols which diflered between the two
estimated sequences was recorded.

Table 1 hists the number of neurons (M) used in the simulation, the network ume
constant (1), the channel memory I which was taken to be 2 for all the sunulations, the
signal-to-noise ratto (SNR) given at the output of the matched filter and 1s computed

by
SNR = ——

the number of duta (p) shifted into the registers at cach simulation step, the number of
svmbols transmutted (N), the error data for cach simulation. The last column of Table
I lists the number of data svinbol estimates which differed between the neural network

cstimnates and dinect computation of the MLESE cost function,

~1
(%)

n\egr;’é; Ig}:e Cgfln SNR o s;giaglfs Total (lg{;l
M) stqnt mgm-_ (dB) transmitted | Errors ences
{(msec) | orv (L) \)
9 29.7 2 8 6 2300 0 0
9 11.8 2 12 6 2500 0 0
9 4.7 2 16 6 2500 0 0
9 1.9 2 20 6 2500 0 0
17 14.9 2 8 12 1500 0 0
17 59 2 12 12 1500 0 0
17 2.3 2 16 12 1300 0 0
17 1.0 2 20 12 1500 0 0
23 9.9 2 S 18 1000 0 0
235 39 2 12 18 10300 0 0
RA 1.6 2 16 18 1000 0 0
23 0.6 2 20 18 1000 0 0
Table 1. SIMULATIONS RESULTS FOR MLSE NEURAL NETWORK (STA-

TIONARY CHANNEL)

To simulate the tume-varyving channel, the multiplicative F(a) will be changed at each

sampling instant. The value of F(#) is constrained to be in the interval

08 < Fl) £ 1.0

The random number generator GGUD of the IMSL library was used to generate
uniformily distributed samples, A, as described in the computer program of Appendix

F. The gencrated sumples A are distributed in the interval
-0.1 < A, 0.1
So at a certain sampling instant, sav o = {7, the value of F(a) is computed by
FiT) = 0.9 + A,

The transmission channel impulse response samples Af"’s and the combined response
of the channel and matched filter s¢*'s along with z, are the parameters describing the

time-varving channel at a certain time t = 1'T. With the exception of this modification.

the simulator for the time-varving channel 1s identical to that for the stationary channel.

Results of this simulation for the time-varving channel are listed in Table 2. [Ref. 3]

. . e all- . . .
o of S I S\R , s;\vrﬁbgfs Total | 4ot
M) stant mem- (dB) transmutted | Errors ences
(msec) | ory (L) (\)
9 29.7 2 S 6 2300 0 0
9 11.8 2 12 6 2500 0 0
9 4.7 2 16 6 2300 0 0
9 1.9 2 20 6 2300 0 0
17 14.9 2 S 12 1500 0 0
1 59 NEEE 12 1500 0 0
1° 2.3 2 16 12 1300 0 0
1~ 1.0 2 20 12 1500 0 0

Table 2. SIMULATION RESULTS FOR MLSE NEURAL XNETWORK

(TIME-VARYING CHANNEL)

The neural network presented in this study can be thought of as an alternative to
che Viterbr algorithm {Retl 1] for computation of the MLSE cost function. Unlhike the
Viterbr algorithm implementation. the neural network does not require a vast amount
of memory for ste-uge. 'rom the simulation results for the two ransmission channcl
conaiions for a channel memory of 2, we can conclude that the neural network can be
used to estimate a transmitted sequence of binary data svmbols. Comparing the esti-
mates of the MLSE neural network and those of the duect computation of the MLSLE
costfuncuon, we can sayv that The MLSE neural network does indeed perform the de-
cred esumation. The amount of data provided by the simulations is far too hittle to make
any final conclusions concerning the performance of the MLSE neural network. How-
ever, the re uits are promusing and indicate that the neural network may be an attractve

alternetive for unplementation of MLSE for binary cornmunications svstems. |[Ref. 3

A. SUMDMIARY OF RESULTS:

In this study, we have first made an introduction to the field of artificial neural
networks. Then, we described the use of some neural networksin pattern recognition and
classification using binary pattern elements. A computer program from an algorithmic
approach for cach one of these networks was constructed and used to simulate the op-
eration of the net for different cases of input pattern.

The Hopfield network was the first net we worked on. A simulation program
imlementing the operation of this net as a content addressable memory for random input
patterns was made. As a supervised network, the Hopfield net is only iterating between
an input pattern and the ones that the teacher has already stored in its memory. showing
that this net is a non-learning one. This net was simulated by presenting noise-corrupted
or perfect input patterns. The response of the Hopfield net to each one of these input
patterns was provided to show the itcrations taken by the net to recognize and classify
even noise-corrupted input patterns. By recognition and classification. we mean the net
converges to one of the M stored patterns that best matches the input pattern. as long
as the original pattern was stored in the net’s memory prior to its use, otherwise a "no
match” will occur.

However. the number of stored patterns (M) is a limitation to the proper operation
of the net as a classifier because of the convergence condition demonstrated by Hopfield.
which states that the net will converge with high probability i M < 0.15.N, where N is
the number of elements or bits in each pattern. These bits are taking on +1 and —1
values, for the +1 and —1 states. respectively.

The Hamming network is a classifier that calculates the Hamnung distance to the
exemplar of each stored class and select that class with the minimum Hamming distance
to the specified input pattern. The Hamming distance is the number of bits in the input
which do not match the corresponding exemplar bits. As a supervised network, we have
first stored 10 exemplar patterns (M = 10) in its memory prior to its simulation. Simu-
lating the operation of this network on the computer. we have seen that it effectively
converges to the correct class for each input pattern. Even presenting ncise corrupted
input patterns, the net correctly converges to the correct class, as long as the original

patiern was stored 1nits miemory prior to the simulation, otherwise a4 "'no match™ will

occur. By convergence of the net, we mean the output nodes of the upper subnet (sce
Figure S) stop changing in time and only the output node corresponding to that
exemplar class which best matches the input pattern, is a positive nonzero value. While,
all the other output nodes were driven to zero by inhibition. In practice, the net will

converge and find the correct class when each weight w,_. connection weight from input

”l_ 1 plus a small random
component. Like the Hopfield net, the elements of the patterns used in these simulations

i to node j in the lower subnet (see Figure §), is set to

were taking on +1 and —1 values for the + 1 and —1 states, respectively.

As a self-organizing (a non-supervised) neural net, the Carpenter ' Grossberg net
self-organizes and self-stabilizes its recognition codes in response to arbitrary sequences
of binary input patterns. In its learning process, the net uses a threshold level called the
vigilance value which determines how good the learned categories will be. If vigilance
value increases due to an environmental disconfirmation, then the net automatically
searches for and learns the best recognition categories. The Carpenter =~ Grossberg net
18 well known as an ART svstem. described in Appendix C. which forms clusters and is
trained without supervision. This net can learn from input patterns and later differentiate
between new and learned patterns. If the new and unknown pattern is classified as
previousely learned pattern at a certain level of vigilance, it will be 1ignored, but if it 1s
not, it will be added as a new learned pattern. This process is repeated as long as the net
1 learning. The number of learned patterns thus grows with time and depends strongly
on the level of vigilance used to compare input to the already stored ones. The results
of simulating this network showed clearly the importance of the vigilance threshold. The
first simulation was done with a vigilance value of 0.9, which means that an input pat-
tern must be very close to a stored exemplar to be considered sinular. The result was 4
patterns learned out of 6 input patterns because the net has taken two input patterns
as an already learned one. Next. we have done the same simulation but this time with a
vighiunce value of 0.7, The results were 2 patterns learned out of 6 input patterns pre-
sented. So higher vigilance threshold can make the net to consider two patterns which
are most similar, to be different and lower threshold can make the net to consider two
different patterns as aimilar. Thus the vigilance threshold, used in the learning process
of this network. i1s the Jominant factor in the operation of this net, which behavior de-
pends strongly on it. A\ proportional adaptation of the vigilance level to the existing
noice in the channel can make the net to perform perfectly during training and testing.
The elements of the patterns used to <imulate this net take on, contrary to the Foplield

and Hamiming nersothe = Fand o0values for the + 1 and —1 states. respectively,

On the other hand, bandwidth-efficient data transmission over telephone and radio
channels is significantly improved by the use of adaptive equalization to compensate for
the time dispersion introduced by the channel. From the work done on adaptive re-
ceivers, a class of nonlinear receivers referred to as maximum-likelihood sequence esti-
mation receivers have emerged as front-runners with respect to error rate parformance.
However, the high degree of computational complexity of the optimal maximum-
likelinood receivers has prohibited their use in manyv applications. It was shown that
neural networks can be used to implement the MLSE and that these networks offer an
attractive alternative for implementation. After mapping the MLSE onto a neural net-
work, we have done some simulations on this network for stationary and time-varving
channels. The results, even though they are not based on enough data to draw definitive
conclusions. showed that the neural network may be an attractive alternative for imple-

mentation of the MLSE for binary communications.

B. NEURAL NETWORK TASKS :

The field of neural networks include manyv different models designed to address a
wide range of probiems in the primary application areas of speech, vision and robotics.
Most researchers focus on neural networks that perform those seven major tasks illus-

trated graphically in Figure 41. These tasks include : [Ref. 1]

SENSORY DATA PREPROCESSING
{Vision, Speech)

CLASSIFICATION \ P
B e~ i

DEPTH

SELF-ORGANIZATION/ NONLINEAR MAPMING

CAIEGORY FORMATION
? Xy 6:
X
? . X 4

g, !
ROBOTNIC CONTNOL
’ Xy ——-
ASSOCIATIVE MEMORIES MULTI-SENSE AUTOMATA

EYE HAMD
COQROINATION

M dadey o

Figure 41. Seven Tasks that Neural Networks Can Perform [Ref. 1]

e Pattern classification: Classifiers are trained with supervision using labeled training
data to partition input patterns into a pre-specified number of groups or classes.
These could represent different objects for a visual image classifier. Inputs to a
classifier may be binary as we have seen for the Hopfield and Hamming nets or
continuous-valued.

o Self-organization or Clustering: Self-organizing networks. like the Carpenter ’
Grossberg net, partition input examples into groups or clusters using unlabeled
training data. This tvpe of clustering or vector quantization is an efficient technique
for reducing information that must be processed at higher levels with little loss in
performance. It also makes good use of the large amount of unlabeled training data
that is typically available in speech and vision problems.

® Associative memory (storage and access): An associative, or content-addressable
memory provides a complete memory item from a key consisting of a partial or
corrupted version of the memoryv. For example, it might return a complete article
citation from only the author’s name or a complete image of a face from only the
bottom half.

e Sensory Data Processing (vision and speech): An enormous amount of realtime
preprocessing is performed in the peripheral sensory vision and hearing centers.
Neural networks can perform this function in real time using massive parallelism.

¢ Computational Problems: Custom neural network architectures can be designed to
solve specific computation problems, such as the traveling salesman problem and
other constrained optimization problems, using nonlinear analog computation.

* Nonlinear Mapping: Many neural networks can map a vector of analog inputs into
an output vector using a nonlinear mapping function which can be learned from
training data. These types of mappings are useful in many areas, including robot
control and nonlinear signal processing.

¢ Multi-sensor Automata: A number of complex, multi-module neural network
automata have been built with visual input and a robot arm to manipulate objects
in an environment. These automata demonstrate how an eve or camera can learn
to scan a scene using self-supervision. how control of a multi-jointed arm and hand
can then be learned using self-supervision. and then how the eve and hand can be
coordinated to perform simple tasks. These automata also demonstrate how inputs
from multiple sensors can be fused to provide classification performance better
than could be achieved with a single sensor.

C. CONCLUSIONS:

From the study done by DARPA [Ref. 1], we can conclude that neural networks
offer important new computational structures. Their real strength is derived from their
ability to self-adapt and learn. If neural networks realize their full potential. thev can be
used for machine vision, speech recognition. signal processing. robotics and other ap-
plications.

Neural network research has matured greatly since the perceptron of 1950, thanks

to the development of advanced mathematical theories and new computer tools, and alvo

to a better understanding of neurobiology. The hardware capabilities are limiting the de-
velopment of important neural network applications. It is clear that if researchers are
not provided with improved simulation and implementation capabilities, the field of

neural networks will once again drift off into the wilderness.

79

APPENDIX A. PROGRAMING THE HOPFIELD NET WHEN USED AS

A CLASSIFIER :

Using Fortran as programing language, the previously described operation algo-

rithm of the Hopfield net when used as a classifier was implemented with the mainframe,

and used to run some simulations as described in the simulation paragraph of the
Hopfield net.

eNoReoNoNsNoNoNoRoRoNoNoNoNaloNoNoNololoNoNoNoNeoNoRoRoRoNoNoNoNeo N

Yoo de e dedododedodedodededlededede e dodedededededevede de e e dedkedededede dedededededededefededededede e dedede e de dededede e ke

* THESIS RESEARCH edeese
* HOPFIELD NET SIMULATION PROGRAM Fededede
¥ BY M. H. KHAIDAR Fededede

Sedededededevedededededededededededededededede el e e e e deve e dededede el Yoo e de e dededededee e dede e dee

J.-’.J evede Yo J oo J Jer! - -LJ J -LJ "f"'* f" ..Ic..l.J AT "CJ J‘ f‘l","'f"' —LJ¢J J ’lf.I_J_J.’I_J-J-J-J_J.J_J_J JCJ.J-J-J.J.J-J.Jr

THIS PROGRAM WAS MADE TO IMPLEMENT THE HOPFIELD NETWORK *
OPERATION ALGORITHM WHEN THIS NETWORK IS USED AS A
CLASSIFIER. AFTER THE INPUT PATTERN IS PROCESSED AS
DISSCUSSED BEFORE AND AFTER CONVERGENCE, THE OUTPUT WILL BE
COMPARED TO THE M (M = 8 IN THIS IMPLEMENTATION) EXEMPLARS
TO DETERMINE IF IT MATCHES AN EXEMPLAR EXACTLY. IF IT DOES,
THE OUTPUT 1S THAT CLASS WHOSE EXEMPLAR MATCHED THE OUTPUT
PATTERN. IF IT DOES NOT THEN A '"NO MATCH" RESULT OCCURS. %
DECLARATION OF VARIABLES: *
PATT(I,S) = THE ITH ELEMENT OF THE STH STORED EXEMPLAR *
T(I,J) THE CONNECTION WEIGHT FROM NODE I TO NODE J*
u(J,T) THE OUTPUT OF NODE J AT TIME T *
W(I) AND V(I) = THE ITH ELEMENT IN THE MATRIX COLUNM
INPUT PATTERN W AND THE MATRIX COLUNM
OUTPUT PATTERN V e
e MAT(12,10), V(12,10) AND CMAT(12,10) = THE 12 BY :0 *
% MATRIX REPRESENTATION OF AN EXEMPLAR %
THE MATRIX COLUNM OF THE JTH STORED PATTERN:*

ook ok ok N 3%

H N N T T S P N U 3

]

* CLASS(J) =

* N = THE NUMBER OF ELEMENT IN EACH EXEMPLAR *
* M = THE NUMBER OF STORED EXEMPLARS *
* DIFF(120,J) = THE DIFFERENCE BETWEEN THE OUTPUT MATRIX *
* COLUNM AFTER CONVERGENCE AND THE JTH STORED*
* PATTERN FOR CLASSIFICATION *

PeFededededededr et dedededede e e Yo Fe Yo de oo dede e e e oo de e de e deviede de e e e de e sk e e e de e e e ke e 0

INTEGER PATT(120,8), U(10,120), T(120,120), V(12,10), CLASS(120)
INTEGER S, I, J, K, COUNT, MAT(12,10)

REAL W(120), VEC(120), DIFF(120,8), CMAT(12,10), DMAT(12,10)
CHARACTER*1 TENM®(12,10)

PRINT>, ' HOPFIELD NETWORK IMPLEMENTATION:

PRINT™,'

R0

aaoaan

aagaoan

Tederbdkdedert R vesbdeverdeve sk vesk s vesk Yot e e b dedb e de ek vk e e vt e Yo e ake e e v e ek Yo e Y e e e sk e e e de b o
* INITIALIZE WITH UNKNOWN INPUT PATTERN *
Jedededededevevee e Tevede e ve e ve e e vk bt e e vk e e ke v S e dedede e de e e devede e dedededke e deve e e e ek ok
N = 120
M =28
OPEN(UNIT=1, FILE='NINE1l', STATUS='OLD')
DO 5 I=1, N
READ(1,*) W(I)
U(1,I) = W(I)
5 CONTINUE
PRINT*,' '
PRINT*,' '
PRINT 1

1 FORMAT('THE UNKNOWN INPUT PATTERN TO THE HOPFIELD NETWORK, '
&'ON THE LEFT AS IM-'/
&'POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR '
&' REPRESENTATION'/
&'WHERE EVERY (*) REPLACES A 1 AND EVERY (.) REPLACES A -1:')
CLLL VECMAT(W,MAT)
PRINT>*,' '
DO 210 I=1,12
DO 220 J=1,10
DMAT(I,J) = MaT(I,J)
220 CONTINUE
210 CONTINUE
DO 230 I=1,12
DO 240 J = 1,10
IF(DMAT(I,J).EQ.1) YHEN
TEMP(I,J) = '+’
ELSE
TEMP(I,J) = ".'
ENDIF
240 CONTINUE
230 CONTINUE
DO 140 K = 1, 12
WRITE("*,145) (MAT(K,J), J=1,10), (TEMP(K,J), J=1,10)
140 CONTINUE
145 FORMAT(4X,10I3,6X,10(A1,2X))
DO 10 I=1, N
READ(*,15) (PATI(I,S), S=1,M)
10 CONTINUE
15 FORMAT(1X,81I5)

Fededededededededede e A dede el s de dedt de e s e sk dt e e v dek e e e sl v e s dede ek ae e b b e e e v deob e e e et

* ASSIGN CONNECTION WEIGHTS *
Fedededededeskdededee e fedkd e vededevede de e dede ek Fededkd e ve e e Yo dede dede s oo de v e e dede e e o e

DO 20 J=1, N
DO 30 I=1, N

IF(I.EQ.J) THEN
T(I,J) =0

ELSE
SUM = 0
DO 35 S=1, M

SUM = SUM + (PATT(I,S)*PATT(J,S))

&1

a0

aOOaaan

35

30

20

60

50

70

40

400

90

260

80

CONTINUE
T(I,J) = SUM
ENDIF
CONTINUE
CONTINUE

FedkTr Yol at Y ab drdb e de el Yo de v e vt e ek sle s vk vede ve e de e sk db sk e e e e sl v e e ek sl sk b e el e

* ITERATE UNTIL CONVERGENCE

*

vkl sa sk dede s v ak deake e dt T e sk Yo s Yo v e v dle v o e de st dle e de vk b e sk e ae e e vk de b e ok vt s o v e s e sk el v o

DO 40 K=1, 9
DO 50 J=1, N
SUM2 = ©
DO 60 I=1, N
SUM2 = SUM2 + (T(I,J)*U(K,I))
CONTINUE
IF(SUM2. LT.0) THEN
U(K+1,J) = -1
ELSE
U(K+1,J) = 1
ENDIF
CONTINUE
FLAG = 0
DO 70 I=1, N
IF(UCK,I).NE. U(K+1,1)) THEN

FLAG = 1
ENDIF
CONTINUE
IF(FLAG. EQ. 0) THEN
COUNT = K
GOTO 400
ENDIF
CONTINUE
S e e e e e e e v e v e e Yt e Yo e e Sl v v s e ve e e e e e v e e de e e e de e e e ek

DO 80 I=1, COUNT
DO 90 J=1, N
VEC(J) = U(I,J)
CONTINUE
PRINT*,' '
PRINT=," '
PRINT 260,1
FORMAT('AFTER, THE',12,'TH ITERATION(S), THE O

+ "HOPFIELD NETWORK LOOKS LIKE '/
+ "THE FOLLOWING FOR THE '
+ "UNKNOWN INPUT PATTERN PRESENTED: ')

PRINT*," '

PRINT*,' '

CALL VECMAT(VEC,MAT)

CALL CHARMAT(MAT,CMAT)
CONTINUE

e ede e S e e e Fe e e e e e de e e Y e e e e e Yo de e e e e e e dede e dede de dedle e e e e de e e

UTPUT OF THE '

SrTrdededeFe ke e

aaa

200

190

180
170

* CLASSIFICATION *
Fesededededsdedrdedededededodededededededesed v dedevest i dededr e dede sed ek dedededededededededededode dedede e

PRINT*,' '

PRINT,' '

PRINT*, 'CLASSIFICATION OF THE UNKNOWN INPUT PATTERN: '
PRINTY, ' ========== '

PRINT 2

FORMAT('AT THIS POINT, FURTHER ITERATIONS WON''T MAKE ANY '
&'CHANGE ON THE OUTPUT'/
&'OF THE NETWORK AND THE PATTERN SPECIFIED BY THE OUTPUT NODES '
&'IS THE'/
&'NET''S OUTPUT. THE TASK OF THE NET NOW IS TO CLASSIFY THE '
&' INPUT AS AN'/
&'ALREADY KNOWN PATTERN OR A NO MATCH WILL OCCUR. AFTER '
&'CLASSIFICATION, '/
&:THE OUTPUT PATTERN OF THE HOPFIELD NET MATCHES BEST THE PATTERN '
&'OF")

DO 200 I=1, N

CLASS(I) = U(COUNT,I)
CONTINUE
DO 180 S=1, M
DO 190 I=1, N
DIFF(I,S) = PATT(I,S) - CLASS(I)
IF(DIFF(I,S).EQ.0) THEN

SCLASS = §
ELSE
GOTO 180
ENDIF
CONTINUE
GOTG 170

CONTINUE

IF(SCLASS. EQ. 1)THEN
PRINT*,'DIGIT ZERO.'

EIL.SEIF(SCLASS. EQ. 2)THEN
PRINT*,'DIGIT ONE'

ELSEIF(SCLASS. EQ. 3)THEN
PRINT*, 'DIGIT TWO.'

ELSEIF(SCLASS. EQ. 4)THEN
PRINT*,'DIGIT THREE.'

ELSEIF(SCLASS. EQ. 5)THEN
PRINT*,'DIGIT FOUR.'

ELSEIF(SCLASS. EQ. 6)THEN
PRINT*,'DIGIT SIX.'

ELSEIF(SCLASS. EQ. 7)THEN
PRINT*, 'BLOCK REPRESENTING THE POINT.'

ELSEIF(SCLASS. EQ. 8)THEN
PRINT*, 'DIGIT NINE.'

ELSE
PRINT*,'NO MATCH'

ENDIF

CLOSE (1)

CLOSE (2)

STCOP

END

&3

C Fedevb ek devede e derridb vt e dede ok s dedb b sk ok b e ek ab b v v e sk ab v e e e e dt e de de e e s e db e e e e ok

SUBROUTINE VECMAT(ARR,MAT)
DIMENSION ARR(120), MAT(12,10)
K=20
DO 100 J=1, 10
DO 110 I=1,12 v

K=K+1
MAT(I,J) = ARR(K)
110 CONTINUE
100 CONTINUE :
RETURN
END

aa

Feedek st de ek ddb st dede e e at st de A ek okt e ab e e el ab de v e e e et v db kst b s e e e e ke b ok

SUBROUTINE CHARMAT(MAT,CMAT)
DIMENSION MAT(12,10),CMAT(12,10)
CHARACTER*1 TEMP(12,10)
DO 120 I=1,12
DO 130 J=1,10
CMAT(I,J) = MAT(I,J)
130 CONTINUE
120 CONTINUE
DO 160 I=1,12
DO 165 J = 1,10
IF(CMAT(I,J).EQ. 1) THEN
TEMP(I,J) = '*'
ELSE
TEMP(I,J) =
ENDIF
165 CONTINUE
160 CONTINUE
DO 166 I = 1, 12
WRITE(6,167)(TEMP(I,J),J=1,10)

167 FORMAT(22X,10(A1,2X))
166 CONTINUE
RETURN
END

C
C Yedrvededrededede s dede S dedede v stk v et de e etk ede kb de sk de e v de sk e e e des e dle e el el e
C * HERE ARE THE 8 STORED EXEMPLAR PATTERNS USED IN THIS PROGRAM **
C * FOR CONVENIENCE, I CHOOSED TO WRITE THEM IN COLUNMS WHERE *
C * EACH ONE CORRESPONDS TO A STORED EXEMPLAR PATTERN. THE FIRST *
C % COLUNM CCRRESPONDS TO THE PATTERN OF A ZERO, THE SECOND OF A *
C * CNE, THE THIRD OF A TWO, THE FOURTH OF A THREE, THE FIFTH OF *
C * A FOUR, THE SIXTH OF A SIX THE SEVENTH OF A POINT THE EIGHT*
C * AND LAST OF A NINE.
C Yesrdededr et dede ety nhﬂ'ne1"**1\'*************‘k*****7\'**3‘17‘\'*"?****”*7\'**7\'*****7\'%‘
CSDATA

-1 -1 1 -1 -1 1 1 -1

-1 -1 1 -1 -1 1 1 -1

-1 -1 -1 -1 -1 1 1 -1

-1 -1 -1 -1 -1 1 1 -1

-1 -1 -1 -1 -1 1 1 -1

-1 -1 1 -1 -1 1 1 -1

84

1
1
1
1
1
1
1
1
-1
-1
-1
1
1
1
1
1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1

14”.111
] L R R B N I | | I R B I | LI B | ' [} LI A I |
11

85

1
1
1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
~1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1

R I e B B B B e B e B e B e B e B B e B B B B I I B e B B B B B e |
'

At rd A At A A A A A A A A A A A e AT A A A A A A A A A A A A A A A A e A e o
[N S R R R R N D D D R R D R RN SR RN NN RN R R N R A I D S R R R R A R D A R L D D e e e D D D N R [I | | I I) '
A A A A A A At A A A At A A A A A A A A A A A A A A A TS A e A A e e e et e
LI R } [O I R R I S A A R R R R I D R I R R A D D e | 1 [2N I) [R I I I |] [I I B R | [}]] [} '
A A A At A A S AT A A A A A A A A A A A A e A
LI R | | I T D I R D D R R [I R B R |]] [I B A e e
A rd A A A A A A A A A A A A A A A A A AT A A AT A A A At A A A A A A A A A A e A Al A A A e e A
LI B] [2 R | LI R | L I B | t [I | [I I I ! [} t 1 '
rdrd A A At A el e A e =
LI R | LI R | LI R | ' "ot l [| (I S R A D D I e R R R | ! [I N L

[B B B e B e B I B B B B B e B o B B B B B B e B e B e B B B B B B I B |
[I A D e |] 1

-1
-1
-1
-1
-1
-1
-1

o =
.9] '

-1
-1
-1

—
'

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

1111111111111111111.J.l.l.l.;.llllll«l_l1111111111111111
LI R B A I) [I) L IR R | [I D e | [e

-1
-1
-1
-1
-1
-1
-1
-1

R6

-1
-1

-1
-1

-1
-1

-1 -1
-1 -1

-1
-1

-1
-1

APPENDIX B. PROGRAMING THE HAMMING NET WHEN USED AS
AN OPTIMUM CLASSIFIER :

Using Fortran as programming language, the previously described operation algo-
rithm of the Hamming net when used as a classifier was implemented with the
Mainframe, and used to run some simulations as described in the simulation paragraph

of the Hamming net.

C Yededodkvrdeyede de Tese Yo Yot Fe e e e v e e e e de e e e e Yede dede dede e e de e de e dededede Yo e dedede o e Fe de e de e e e ke de e
C Fevedede THESIS RESEARCH Fededede
C dededede HAMMING NET SIMULATION PROGRAM Fededede
C dedledeste BY M. H. KHAIDAR Fevedese
C dededesed dede e e oo dededee e Yede Yo v ve Yo e e de e dededede dedede e dede e de e dede e de e dede e e dede e de e dedede e e deve et
C

C

C Feedededededededededede Yo e dedede e e oo dede dedede e dedede e e dedededededede e dedeTedededede e dededededeSededededededede de dede
C * THIS PROGRAM WAS MADE TO IMPLEMENT THE ALGORITHM OPERATION OF-
C * THE HAMMING NET, WHEN IT IS USED AS A CLAS®"T"IER, PROVIDED IN¥*
C * THE CHAPTER ABOUT THIS NET. ¥
C * VARIABLE DECLARATION : ¥
C ¥ N = NUMBER OF NODES IN EACH EXEMPLAR ¥
C * M = NUMBER OF STORED EXEMPLARS %
C * PATT(I,J) = THE ITH ELEMENT OF THE JTH STORED EXEMPLAR e
C * THETA = THE THRESHOLD IN EACH NODE *
C * W(I,J) = THE CONNECTION WEIGHT FROM INPUT I TO NODE J ¥
C ¥ X(I) = THE ITH ELEMENT OF THE INPUT PATTERN TO THE N.T w
C * U(J,T) = THE OUTPUT OF NODE J AT TIME T *
C ¥ EPSILON = THE VALUE OF WEIGHTS (INHIBITORY) BETWEEN *
C * DIFFERENT OUTPUT NODES ¥
C Yedededededededeseddede e devedede e e Ve e e e de e e Se e dededededevedede e dededede e de dededededededededede e do e e dede e veve
C

INTEGER PATT(120,10), U(10,11), MAT(12,10), g

INTEGER THETA, I, J, K, T, MAP(12,10)

REAL RESLT, EPSILON, W(120,10), SUM, SUM2, X(120), ARR(120)
REAL CMAT(12,10)

CHARACTER*1 TEMP(12,10)

PRINT*,' HAMMING NETWORK IMPLEMENTATION'

PRINT*,’ S '

EPSILON = 0.08
C
C dededededededede THETA(J) = N/2 = 120/2 = 60 Fdddedededofedededrdedokdedededdedededededede
C

THETA = 60
C
o Fevededededodedevesevlede e e Ve Yoo Yoo e de de e e e e Yo dede s e dede v de vedfe e et e de dede e de v e v v st vk e ve e e de e e e et ok
C * ASSIGN CONNECTION WEIGHTS *
C Fede oo e Fedediedevek Yo e dededede Yot Yoo e e Yo e e e e v e ve e e e ek e v e e vt s s e dederieshe e destedfe de e e e et
C

M =10

88

aaoaoaa

10
15

25
20

30

141
140

142
145

50

40

N = 120
DO 10 I=1, N
READ(*,15) (PATT(I,J), J=1, M)
CONTINUE
FORMAT(1X,10I5)
DO 20 I=1, N
DO 25 J=1, M
W(I,J) = PATT(I,J)/2.0
CONTINUE
CONTINUE

Sedededededevddedededeledehede dedede e dedede e e e e dede e de ke

* INITIALIZATION WITH UNKNOWN INPUT PATTERN *
Fedededrdehdedeteledodoloivivieiolololololededeivivioioioh ko dodododeliodoloklodelededolodotdoiodedodededoetededededo dotode

OPEN(UNIT=1, FILE='INPUT', STATUS='OLD')
DD 30 I=i, N
READ(1,%*) X(I)

CONTINUE

PRINT*,' '

PRINT*,' '

PRINT 1

FORMAT('THE UNKNOWN INPUT PATTERN TO THE HAMMING NETWORK, ON THE'
&'LEFT AS IM-'/
&'POSED ON THE NETWORK AND ON THE RIGHT IN A MUCH CLEAR'
&'REPRESENTATION'/
&'WHERE EVERY (*) REPLACES A 1 AND EVERY (.) REPLACES A -1:'")

CALL VECMAT(X,CMAT)

CALL CHARMAT(MAT,CMAT,TEMP)

PRINT*," '

PRINT,' '

DO 140 I =1, 12

DO 141 J=1, 10
MAP(I,J) = INT(CMAT(I,J))
CONTINUE
CONTINUE
DO 142 I =1, 12
WRITE(6,145)(MAP(I,J), J=1, 10), (TEMP(I,J), J=1, 10)
CONTINUE
FORMAT(4X,1013,6X,10(A1,2X))

DO 40 J=1, M
st =20
Do 50 I=1, N
SUM = SUM + W(I,J)*X(I)
CONTINUE

SUM1 = SUM + THETA
IF(SUM1. GT. 0) THEN
U(J,1) = SuM1
ELSE
U(J,1) =0
ENDIF
CONTINUE

Yedededededededededededeededededededededeve s dedevede e e vede e Yedeole st de deab v dededabe e de e de e e e sl vt e e e e
* ITERATE UNTIL CONVERGENCE K

89

aaoaaaa

aoaoaoaan

Tk ek dakstab s sl v s e vk st Al de sk e e e deve e sk e e st e e s e sk e e e e e o de e e e deoen

DO 60 T=1, 10
DO 70 J=1, M
SUM2 =
DO 80 K=1, M
IF(K.NE.J) THEN
SUM2 = SUM2 + U(K,T)
ENDIF
80 CONTINUE
RESLT = U(J,T) - SUM2*EPSILON
IF(RESLT.GT. 0) THEN
U(J,T+1) = RESLT
ELSE
U(J,T+1) =
ENDIF
70 CONTINUE
60 CONTINUE

Yegkdrdevesk T ve sk Yoo rk e v e el s e Yoo oo e v sk vk sk de v sk de devdk e v sk e s st b e de sk v e e e e sk b de v s e et e
¥ THE OUTPUT OF THE HAMMING NETWORK ¥

Yesededere ok stak v e sedtvede Yedevede e deve e Yedk ek ae e e s vk e e sk skt s Yo vk de e veak s v dbdle vk ake ve s v e oeste

PRINT*,' '
PRINT*,' '
PRINT 2
2 FORMAT('THE OUTPUT OF THE HAMMING NETWORK, WHERE EACH COLUNM '
&'REPRESENTS THE '/
&'OUTPUT NODE VALUES FOR THE CORRESPONDING CLASSES AT A CERTAIN
&'NUMBER '/
&'OF ITERATIONS: ')
PRINT*,' '
PRINT*,' '

1

FeorarvrsevededTiede se e dedl sk veak vk b e e e de v v ak v v v v st sk e de st e sl s e s s e sk s sk ok s v st sk e dle sk ok vl sl dle o
ONLY TEN ITERATIONS ARE SUFFICIENT TO THE NET TO CONVERGE TO*
* THE RIGHT ANSWER FOR OUR SIMULATIONS *
Jodededeededededrede oo de e e e Ve e Sedede dedee Fedede e dedede e dedede e Yede de e Ve e de e e e e e e e e e e de e e e e e
PRINT*, NUMB OF ITERATIONS= 1' , 2'," 3, A 5',
+' 6' , 7', 8', 9', 10'
PRINT*," '
DO 90 J=1, M
Q=J -1
WRITE(*,95) Q,(U(J,T), T=1,10)
90 CONTINUE
95 FORMAT(1X,'FOR CLASS',I2,’:',4X,10I5)
PRINT*, '
PRINT*,' '
PRINT™, CLASSIFICATION OF THE UNKNOWN INPUT PATTERN
PRINT™*,
PRINT 3

3 FORMAT('THEN, THE DISTURBED UNKNOWN INPUT TO THE HAMMING NETWORK '/
&'AFTER CONVERGENCE CORRESPONDS TO THE PATTERN STORED OF THE')
IF(U(1,10). GT. G)THEN
rRLNTH, 'CLASS ZERO.'

90

[oXoNe

aaa

110
100

160
150

180
170

ELSEIF(U(2,10).GT. 0)THEN
PRINT*, 'CLASS ONE.'
ELSEIF(U(3,10).GT. 0)THEN
PRINT*, 'CLASS TWO.'
ELSEIF(U(4,10).GT. 0)THEN
PRINT*, 'CLASS THREE.'
ELSEIF(U(5,10).GT. 0)THEN
PRINT*, 'CLASS FOUR.'
ELSEIF(U(6,10). GT. 0)THEN
PRINT*, 'CLASS FIVE.'
ELSEIF(U(7,10).GT. 0)THEN
PRINT*, 'CLASS SIX.'
ELSEIF(U(8,10).GT. 0)THEN
PRINT*, 'CLASS SEVEN.'
ELSEIF(U(9,10).GT. 0)THEN
PRINT*, 'CLASS EIGHT.'
ELSEIF(U(10,10).GT. 0)THEN
PRINT*, 'CLASS NINE.'
ENDIF
STOP
END

Fedferededl e s vedert e dtal e Tede T Yook s e vk e e dk e e v s de e vk e e vkt b s e e ae e e v e e e st e e ve ke st

SUBROUTINE VECMAT(ARR,CMAT)
DIMENSION ARR(120), CMAT(12,10)
K =0
DO 100 J=1, 10

DO 110 I=1,12

K=K +1
CMAT(I,J) = ARR(K)
CONTINUE
CONTINUE
RETURN
END

Fe eIt Vedevedevede de e de deve s e db e e v v e e vk se e e sk v v dl st deak e e ek e de e v de o de e e b db ke de st b de kel e dledte

SUBROUTINE CHARMAT(MAT,CMAT,TEMP)
DIMENSION MAT(12,10), CMAT(12,10)
CHARACTER*1 TEMP(12,10)
DO 150 J=1, 10
DO 160 I=1, 12
MAT(I,J) = CMAT(I,J)
CONTINUE
CONTINUE
po 170 I =1, 12
DO 180 J=1, 10
IF(MAT(I,J).EQ.1) THEN
TEMP(I,J) = '*'

ELSE
TEMP(I,J) = ".'
ENDIT
CONTINUE
CONTINUE
RETURN

22

oXeoEeNeloRaoNoNeoNoNoNoRoNe!

END

FeeTerere e e i ded ok ok ok ek e vede v e ek dkea ok ke v de v ok b v ab s abe sk e e e e v e e e e e e e e v sk e e e ae e
* HERE ARE THE 10 STORED EXEMPLARS USED IN THE IMPLEMENTATION +*
* OF HAMMING NET. TOR CONVENIENCE, I CHOOSED TO WRITE THEM IN *
* A MATRIX OF 10 COLUNMS AND 120 ROWS, WHERE EVERY COLUNM *
* CORRESPONDS TO AN EXEMPLAR OF 120 ELEMENTS REPRESENTING THE *
* 12 BY 10 REPRESENTATION OF THE PATTERN AS SHOWN IN THE STUDY =*
* OF THE HAMMING NET. THE FIRST VECTOR COLUNM CORRESPONDS TO *
* THE PATTERN OF DIGIT O, THE SECOND OF 1, THE THIRD OF 2, THE *
* FOURTH OF 3, THE FIFTH OF 4, THE SIXTH OF 5, THE SEVENTH OF *
* 6, THE EIGHT OF 7, THE NINTH OF 8 AND THE LAST OF . *
oo ae T e el e e T S e e e Y e Rk e e e ek ke e e e e sk s v ek e ak b e e e e e v e e ek e e

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 ~1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 i -1 -1 -1 1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 -1 -1 1 1 1 -1 -1 -1

-1 -1 -1 1 1 1 -1 -1 -1

-1 ~1 -1 1 1 1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 1 1 -1 -1 -1

-1 1 -1 -1 1 1 -1 -1 -1

-1 1 1 1 1 1 1 -1 -1

-1 1 1 1 1 1 1 1 -1

-1 -1 -1 1 1 -1 -1 1 -1

-1 -1 -1 1 1 -1 -1 1 -1

-1 -1 -1 1 1 -1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 1 -1 1 1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 1 -1

-1 1 1 -1 1 1 -1 1 -1

-1 1 1 -1 1 1 -1 -1 -1

1 1 1 -1 1 1 1 1 -1

1 1 1 -1 1 1 1 1 -1

i -1 -1 -1 -1 -1 -1 1 -1

1 -1 -1 -1 -1 -1 -1 1 -1

1 -1 -1 -1 -1 -1 -1 1 -1

1 1 -1 1 1 1 -1 1 -1

92

-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
-1
-1
-1
1
1
1
1
1
1
1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1

1
1
1
1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1
-1
-1
-1
1
1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-1
1
1
1
-1
-1
-1
-1
1
1
1
-1
-1
-1

1
-1
-1
-1

1

1

1
-1
-1
-1

1

1
-1
-1
-1

1

1

1

1
-1
-1
-1

1

1
-1
-1
-1

1

1

1

1

1

1

1

1

1
-1
-1
-1

1

1

1

1

1

1

1

1

1
-1
-1
-1

1

1
-1
-1

11
" | I D R R B | t LI R Y B I) [2] LI B |
LI I A |

93

Yttt rd A A At~ A A A

rMed A A Al A A A A A A A A A et A A
L R R B A D I D R e D D R D R D DU DR DR B B)
L B B B e B e B e B B o B B B B B B B B B B B o B I I |
LI R R R SN R D DL e R D R D D B DA DR RN BN BN |

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

ot
LI .) LI |

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

~ et~ e
1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

11111111111
[I 1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

Lo B B e B B B e e IR D R]
L D R N DR B R B |

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

~ o
LI R B B A)

-1

L I B e I B I o]
LI R R D B B |

-1
-1
-1
-1
-1
-1
-1
-1

11111111111111111
) LI R R D D e R R B |

-1
-1
-1
-1
-1

94

APPENDIX C. ART AND OPERATION OF THE CARPENTER /
GROSSBERG NET :

The following 1s a description of the ART net operation according to Carpenter /
Grossberg [Ref. 12]. A cvcle that traces the real time dvnamics of ART network in re-
sponse to arbitrary sequences of binary input patterns is depicted in Figure 42.

© FzY «4] © FzY A
T

Figure 42. The ART net search for a correct F, code. [Ref. 12]

In Figure 42a, an unknown input pattern I is presented to the net. Pattern [is then
transformed into a pattern X of activation across the nodes.In other words. the input

pattern I generates a short term memorv (STM) activity pattern X across a field of

95

feature detectors F, . Grossberg sees short term memory (STM) as a wayv of keeping
patterns active after the original input pattern has vanished. A short term memory is a
persistent activity pattern in a set of neurons, maintained by nonlinear feedback svstem.

The input pattern I also activates an orienting subsystem A, but pattern X at F, in-
hibits A before it can generate an output signal. On the other hand, the pattern X of
STM activities across £, elicits an output pattern S of output signals from F,. When a
signal from a node in F, is carried along a pathway (the bottom-up adaptive filter) to
F,. the signal is multiplied or gated by the pathway’s long term rmemory (LTM) trace.
The LTM-gated signal (i.e., signal times LTM trace), not the signal alone, reaches the
target node. Each target node sums up of all of its LTM-gated signals, which results in
pattern S generating a pattern T of LTM-gated and summed input signals to F, as shown
in Figure 42a. The transformation from S to T is called an adaptive filter. The input
pattern T to F, is quickly transformed by interactions among the nodes of F, . The re-
sulting pattern of activation across [, is a new pattern Y. This new pattern, rather than
the mput pattern T. is stored in STM by F,. As soon as the bottom-up STM transfor-
mation X — 1 is completed, the STM activities Y in F, elicit a top-down excitatory signal
pattern U back to F, (Figure 42b). Only sufficiently large STM activities in Y elicit
signals in U along the feedback pathwavs F, — F,. As before, the top-down signals U are
also gated bv LTM traces and the LTM-gated signals are summed at £, nodes. Then. the
pattern U of output signals from F, generates a pattern V of LTM-gated and summed
mput signals to F,. The transformation from U to V is thus also an adaptive filter. The
pattern V is called a top-down template. or learned expectation.

Two sources of input now perturb F,. the bottom-up input pattern I which generated
the original activity pattern X and the top-down template pattern V that resulted {rom
activating X. The amount by which activity in X is attenuated to generate X" depends
upon how much of the input pattern [is encoded within the template pattern V. In
particular, £, acts to match V against I. Now, we will discuss how a match or mismatch
of I and V at F, regulates the course of learning in response to the pattern I.

When a mismatch attenuates STM activity across F,, the total size of the inhibitorv
signal from F, to A is also attenuated. If the attenuation is sufficiently great, inhibition
from F, to A can no longer prevent the arousal source A from firing. Figure 42¢ shows
how disinhibition of A can result in the release of an arousal burst to F, which equally,
or nonspecifically, induces selective and enduring inhibition of active population of F,.

In Figure <2¢, inhibition of Y leads to removal of the top-down template V, and

thereby terminates the mismatch between I and V. Input pattern [can thus remstate the

96

original activity pattern X across f|, which again generates the output pattern S from
F, and the input pattern T to F,. Due to the enduring inhibition at F,, the input pattern
T can no longer activate the original pattern Y at F,. A new pattern Y” is thus generated
at F, by I (Figure 424d).

The new activity pattern 1” reads out a new top-down template pattern }°. If a
mismatch again occurs at F,, the orienting subsyvstem is again engaged, thereby leading
to another arousal-mediated reset of STM at F,. In this way, a rapid series of STM
matching and reset events may occur. Such an STM matching and reset series controls
the svstem's search of LTM by sequentially engaging the novelty-sensitive orienting
subsyvstem. Although STM is reset sequentially in time via this mismatch mediated,
self-terminating LTM search process, the mechanisms which control the LTM search
are all parallel network interactions rather than serial algorithms. Such a parallel search
scheme continuously adjusts itself to the system’s evolving LTM codes. In general, the
spatial configuration of LTM codes depends upon both the system’s initial configuration
and its unique learning history, and hence cannot be predicted a priori by a pre-wired
search algorithm. Instead, the mismatch-mediated engagement of the orienting subsys-
tem realizes the type of self-adjusting search.

The muismatch-mediated search of LTM ends when an STM pattern across 71,
reads-out a top-down template (V) which matches I to the degree of accuracy recuired
by the level of attentional vigilance, or which has not vet undergone any prior learning.
In this case. a new recognition category is then established and a new bottom-up code

and new top-down template are learned [Ref. 6].

97

APPENDIX D. PROGRAMING THE CARPENTER / GROSSBERG NET

Using Fortran as programing language, the previousely described clustering algo-
rithm of the Carpenter * Grossberg net was implemented with the Mainframe, and used

tu run some simulations as described in the simulation paragraph of the net.

C e ve Yook vededk e sk vk b st ok v v et e v sk de st v de s ab ded e d at Sl e e v sk e ek e e deae e vk e ke e e e
c desesee THESIS RESEARCH Fedeiee
c #ik CARPENTER / GROSSBERG NET SIMULATION PROGRAM dededes
c Fedeaese BY M. H. KHAIDAR dededede
C Shab st dedle vt ab s e de v v vk de sl v vk gl e e b vl dededb Yo e e s e e e v sk e e vt s e de v v s e e sl e e e b ke v Ve ve e
C

C

C Yokttt vede T Yo Y ae Yo s o vt de s de v s e e St vkl s b e e s e sk e e v e e s ok s sl e e sl e e STl v v vl Y el e Yot
C * THIS PROGRAM WAS MADE TO IMPLEMENT THE ALGORITHM OPERATTION
C * OF THE CARPENTER / GROSSBERG NET, WHEN IT IS USED AS A CLASS-*
C * IFIER, PROVIDED IN THE CHAPTER FOR THIS NETWORK. W
c w* VARIABLE DECLARATION : *
C e W(I,J) = THE TOP DOWN CONNECTION WEIGHT BETWEEN INPUT

C * NCDE I AND OUTPUT NODE J *
C * COUNT = THE NUMBER OF PATTERNS STORED IN THE MEMORY OF
C * THE NET AT A CERTAIN TIME T (THIS NUMBER IS VAR-*
C * TANT IN TIME) *
C ” B(I,J) = THE BOTTOM UP CONNECTION WEIGHT BETWEEN INPUT w*
C W NODE I AND OUTPUT NODE J %
C i RO = THE VIGILANCE THRESHOLD WHICH INDICATES HOW CLO-**
C B SE AN INPUT MUST BE TO A STORED EXEMPLAR TO *
C ¥ MATCH ¥
C L PATT(I,J)= THE ITH ELEMENT OF THE JTH STORED EXEMPLAR *
C W X(I) = THE VECTOR REPRESENTATION OF THE INPUT PATTERN *
C * JMAX = THIS VARIABLE INDICATES THE CLASS THAT BEST i
C * MATCHES THE INPUT PATTERN w
C W C(J,T) = THE OLTPLT OF OUTPUT NODE J AT TIME T W
C fedleseedlededndlebededdededs s e dededeveseveseyd Yo Fedhedededede e e dedeest

INTEGER W(64,10), ANS, COUNT, JMAX, J, I, K, PATT(64,10)
INTEGER T, AMAT(8,8), MATRIX(8,8), TRUE, TIME

REAL B(64,10), SUM, SUM1, 3UM2, SUM3, SUM&, RO, SUM5, SUM6
REAL EPSILON, RATIO, Y(64), RESLT, CMAT(8,8)

REAL ARR(64), X(64), PMAT(8,8), BMAT(8,8), U(10,11)

C
C Federedederrvedratvestaededealdb sk v s s s deae o de s st sk ek dle v sk s e sk et e e e deae e v e e v de s o sbe s e e
C * INITIALIZATION *
C Frdededede ot de et s ol e Yo T e e sk e st v sk Yo v e e sk v vk e e et o e Fedfed e e e e e de e v b e e s et
C
PRINT*,' CARPENTER / GROSSBERG NETWORK IMPLEMENTATION'
PRINT*,’ '
DO 10 I=1, 64
DO 20 J=1, 10
W(I,J) =1
B(I,J) = 0.125

98

20 CONTINUE
10 CONTINUE
COUNT = 1

Sy T YT Y Ve T e Y e e o Se S e Y dk e v ok et s ak de v e v e ak e vk ek v e e Y v d e et e e v b e e e e e vedle e e et

o APPLY NEW INPUT *
Aeresedese Yo vk e Yo e Ak Yoy e ve sk e sle v sk ve sk e e vk e s e s s vt ok Yo sk vl v at v s deake v s vl e e e de e vl de s el

aOOaoaon

OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 25 I=1, 64
READ(1,26) PATT(I,1)
X(I) = PATT(I,1)
25 CONTINUE
26 FORMAT(1X,IS5)
PRINT*,' '
PRINT¥,' '
PRINT*,'THE FIRST INPUT PATTERN TO CARPENTER / GROSSBERG NET.:'
CALL VECMAT(X,CMAT)
PRINT:,' '
PRINT*," '
DO 240 I=1, 8
DO 250 J=1, 8
AMAT(I,J) = INT(CMAT(I,J))
250 CONTINUE
240 CONTINUE
CALL CHARMAT(AMAT,PMAT)
TRUE = 0
JMAX = 1
TIME = 0
GOTO 800
- 400 TF(TRUE.EQ.4) GOTO 600
PRINT:," '
PRINT: !
PRINT*,:PLEASE, ENTER YOUR CHOICE:'

H

PRINT™, (1) A NEW INPUT PATTERN'
PRINTY,
PRINT, (2) STOP'
READ* , ANS
IF(ANS.EQ. 1) THEN
TRUE = TRUE + 1
IF(TRUE.EQ. 1) THEN
GOTO 1
LSEIF(TRUE. EQ. 2) THEN
GOTO 2
ELSEIF(TRUE. EQ. 3) THEN
GOTO 3

i

ELSE
GOTO 4
ENDIF
ELSE

GOTO 600
ENDIF
1 OPEN(UNIT=2, FILE='E', STATUS='0OLD')
DO 30 I=1, 8
READ(2,35) (MATRIX(I,J), J=1,8)
30 CONTINUE

35

31
36

32
37

OO0

50

40

aoaoan

500

80

FORMAT(1X,8I5)
GOTO 7
OPEN(UNIT=3, FILE='F', STATUS='OLD')
DO 31 I=1, 8
READ(3,36) (MATRIX(I,J), J=1,8)
CONTINUE
FORMAT(1X,815)
GOTO 7
OPEN(UNIT=4, FILE='FPRIME', STATUS='OLD')
DO 32 I=1, 8
READ(4,37) (MATRIX(I,J), J=1,8)
CONTINUE
FORMAT(1X,815)
GOTO 7
OPEN(UNIT=5, FILE='FDPRIME', STATUS='OLD')
DO 33 I=1, 8
READ(5,38) (MATRIX(I,J), J=1,8)
CONTINUE
FORMAT(1X,815)
DO 44 I=1, 8
DO 45 J=1, 8
BMAT(I,J) = REAL(MATRIX(I,J))
CONTINUE
CONTINUE
CALL MATVEG(BMAT,X)

Fedede sk st yeded s Yo Yo vk d vede s se b vede s e sk sk deve b sk v ek s de e e de e sk ok e de e dede b e e v e dede sk de e vkt
* COMPUTE MATCHING SCORES v

e oo v veae Yot e e ae Ye e e v e de ve v e ue v Y v e vede de v sk Yeak v v vt a e dle e e dk sl v de v dle e dke e Yo Sk dle sk e sk e e dfedbe e

DO 40 J=1, COUNT
SUM = 0
DO 50 I=1, 64
SUM = SUM + B(I,J)*X(I)
CONTINUE
U(J,1) = StM
CONTINUE

Sedededeseskvestdede st Yotk de st v vt e e sk deve e s v sk dlede sk e de sk e e e sk de e e e e Yo dede e e e e vk e e e e e dle e o
* SELECT BEST MATCHING EXEMPLAR *

Fe Ve devesevedeatvese Yo vr vl vedleve e ve e e e ve v sedeve S v e Yo st ok Yook sed v ok vk g sk st sk e vk e ok e vk bk ke seale ke v e e

EPSILON = 0.08
DO 60 T=1, 10
DO 70 J=1, COUNT
SUM1 = 0
DO 80 K=1, COUNT
IF (K.NE.J) THEN
SUM1 = SUM1 + U(K,T)
ENDIF
CONTINUE
RESLT = UL J,T) - SUMI*EPSILON
IF(RESLT. GT. 0) THEN
U(J,T+1) = RESLT
ELSE
U(J,T+1) = 0

100

70

90

aoonon

100

120

Al
aaaoaa

300

47

46

ENDIF
CONTINUE
CONTINUE
DO 90 J=1, COUNT
IF(U(J,9).GT.0) THEN
JMAX = J
ENDIF
CONTINUE

P Yo sk sk sk v ks st s db e Yo b b s v s e e ke e v st e s e s s sl o s e e e ool s e e e e et e e e e s e e e e e sk

* VIGILANCE TEST *
el e et e e de e v Ytk s e dedeab Y v sk ok e sk drve sk dede st e de v e de sk A dedede e de b e e ek e ek e e

RO = 0.7
SUM2 = 0
DO 100 I=1,64

SUM2 = SUM2 + X(I)
CONTINUE
SUM3 =0
DO 120 I=1, 64

SUM3 = SUM3 + W(I,JMAX)*X(I)
CONTINUE
RATIO = SUM3 / SUM2
IF(RATIO. GT.RO) THEN

GOTO 200
ELSE

GOTO 300
ENDIF
YevedevedededeVidededededededevedede e de e e devede Ve de sk e e e e de e Yo dedede Yo de e de e de e e de e dle e de e de e de e e de e de e e e
* DISABLE BEST MATCHING EXAMPLAR *
Sestelere e de e e T T e e e e e e e e e oo e le ve de e e Fe e e dentesleestente e s v e e le Y e wle s we sl e e s e e et ot
vededededededefedede e deSedede e Yo e Yo de Dedde Yo e Ve e e e Yok Jedesr e TeTr Y ev e e e e e v s e e e e T g e e e s o

IF(TIME.NE. COUNT) THEN
DO 46 J=1, COUNT
TIME = TIME + 1
IF(U(J,1).NE. 0) THEN
IF(J.NE. JMAX) THEN
SUMS = 0
DO 47 I=1, 64
SUM5 = SUM5 + B(I,J)*X(I)

CONTINUE
U(J,1) = SUMS
ELSE
U(J,1) = 0
ENDIF
ENDIF
CONTINUE
GOTO 900

ENDIF

PRINT*, 'BECAUSE, THE RATIO IS LESS THAN THE VIGILANCE THRESHOLD'
PRINT*,'THE INPUT PATTERN IS CONSIDERED TO BE DIFFERENT FROM '
PRINT*,'ANY EXAMPLAR PATTERN STORED. THIS INPUT PATTERN IS'
PRINTY,'THEN STORED WITH THE OTHERS AS A NEW EXAMPLAR.'

CALL VECMAT(X,CMAT)

PRINT*,' '

oo R EPK®]

aaOaoaa

270
260

130

140

145

48

49

200

150

PRINT*,'THE UNKNOWN INPUT PATTERN TO CARPENTER/GROSSBERG NET.:'
PRINT*,' '
DO 260 I=1, 8

DO 270 J=1, 8

AMAT(I,J) = INT(CMAT(I,J))

CONTINUE
CONTINUE
CALL CHARMAT(AMAT,PMAT)

e e st e e dedleiedb Yo sy e s s v e e dedlede e et e e vk e e e e e e e e de ek e e de ek e e e e e e ek

* ADD THE NEW INPUT PATTERN TO THE MEMORY OF THE NET *
ededededededese Yo de e de dededede e Fe e e e e devese e Ve Y e e e dede e de ek e e e ve e e de e e e e e e e el e Ko e e

COUNT = COUNT + 1
OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 130 I=1, 64
PATT(I,COUNT) = X(I)
CONTINUE
REWIND 1
DO 140 I=1, 64
WRITE(1,145) (PATT(I,J), J=1,COUNT)
CONTINUE
FORMAT(1X,1015)
SUM6 = 0
J = COUNT
DO 48 I=1, 64
SUM6 = SUM6 + W(I,J)*X(I)
CONTINUE
DO 49 I=1, 64
B(I,J) =
wW(I,J) =
CONTINUE
TIME = 0
GOTO 400

(W(I,J3)*X(1)) / (0.5 + SUM6)
W(I,J)*X(I)

Fededededededevededededededede e deSedededededevedededode e de e dededeYedededededededededededede Yo dode et de e dede e oo deve e e

* ADAPT BEST MATCHING EXAMPLAR ¥

e e e e e e e e e e Ve e Y e Ve e Ve S S e e e e Ve e e e e e de e de e e e e e dede e Ve e dedeve dede Yoo Yo de oo e

PRINT*,'BECAUSE, THE RATIO IS GREATER THAN THE VIGILANCE'
PRINT*, 'THRESHOLD, THE INPUT PATTERN IS CONSIDERED '
PRINTY,'TO MATCH A STORED PATTERN WHICH IS UPDATED BY'
PRINT*, 'PERFORMING A LOGICAL ''AND'' OPERATION BETWEEN '
PRINT*,'ITS BITS AND THOSE OF THE INPUT PATTERN, AND'
PRINTY,'THE NEW UPDATED PATTERN WILL LOOK LIKE:'
DO 150 I=1, 64

Y(I) = PATT(I,JMAX)*X(I)
CONTINUE
CALL VECMAT(Y,CMAT)
PRINT*,"' '
DO 155 I=1, 8

DO 157 J=1, 8

AMAT(I,J) = INT(CMAT(I,J))

CONTINUE

CONTINUE

102

OO0

aaa

160

170
175
800

180

190
600

230
220

320

CALL CHARMAT(AMAT,PMAT)

Fokeverkreakak ke e e v sk v v e v v e sk v sk deak b sl Yo v ok sk s e e e s e de v e de e de sk s s v v v de e e ek sk ok

* THE UPDATED PATTERN IS PUT BACK INTO THE MEMORY OF THE NET *
Sedkskabvbrde e dededr v de e s s e e ok ak sk e vk b de v e e s de e e de e e e e e de S e s Tt e st v e v v s e s dbe e

OPEN(UNIT=1, FILE='LETTER', STATUS='OLD')
DO 160 I=1, 64
PATT(I,JMAX) = Y(I)
CONTINUE
REWIND 1
DO 170 I=1, 64
WRITE(1,175) (PATT(I,J), J=1,COUNT)
CONTINUE
FORMAT(1X,1015)
SUM4 = 0
DO 180 I=1, 64
SUM4 = SUM&4 + W(I,JMAX)*X(I)
CONTINUE
DO 190 I=1, 64
B(I,JMAX)
W(I,JIMAX)
CONTINUE
GOTO 400
CLOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)
CLOSE (5)
STOP
END

(W(I,IMAX)*X(I)) / (0.5 + SUM4)
W(I,IMAX)*X(I)

Vedevedevedeae e e vl Yo de de v dede e b e de v st ab e vl s sl de e Fe e e de e e e dede e s de e e e vt e e e de e de e st sk v okt

SUBROUTINE VECMAT(ARR,CMAT)
DIMENSION ARR(64), CMAT(S8,8)
K=20
DO 220 J=1, 8
DO 230 I=1,8
K=K+ 1
CMAT(I,J) = ARR(K)
CONTINUE
CONTINUE
RETURN
END

Fedesedrvedtdededt sl dededtedb e e desedi s v de sl sk v s e v de e e e ekl el deabed dea e s sk e e de sl e ek

SUBROUTINE MATVEC(CMAT,ARR)
DIMENSION ARR(64), CMAT(8,8)
K=20
DO 310 J=1, 8
DO 320 I=1, 8
K=K + 1
ARR(K) = CMAT(I,J)
CONTINUE

103

310

aaon

340
330

660
650

167
370

CONTINUE
RETURN
END

Fedestrldeakakak ol st d b skt riak okl s s s v dt vt e sk e e b sk e db e ab bk ab st ok b e e e b e e e e b ek koo e

SUBROUTINE CHARMAT(MAT,CMAT)
DIMENSION MAT(8,8),CMAT(8,8)
CHARACTER*1 TEMP(8,8)
DO 330 I=1,8
DO 340 J=1,8
CMAT(I,J) = MAT(I,J)
CONTINUE
CONTINUE
DO 650 I=1,8
DO 660 J = 1,8
IF(CMAT(I,J).EQ.1) THEN
TEMP(I,J) = '*'
ELSE
TEMP(I,J) = ' '
ENDIF
CONTINUE
CONTINUE
DO 370 I =1, 8
WRITE(6,167)(TEMP(I1,J),J=1,8)
FORMAT(8X,10A1)
CONTINUE
RETURN
END

For the first input pattern to the net, we have used the pattern of the letter “C” given

below. The elements of the matrice representation take on 0 and 1 values. To make the

pattern clearer, we have replaced every element of 0 value by a white pixel and elements

of 1 value by black pixels. A compact representation of this pattern is shown to the right

below :

COOOOCOOO

(o e N N e ™)
HOOOOOO
HOOODOOO K
RPOOOOO O
HOOOOOO
HOOOOOOK
OrHROO0OOO+~RO

In a similar manner, the pattern representation of the letter “E” used in the simu-
lation of the net is shown below. Where the left hand side pattern representation of "E”

is the actual input to the net.

104

OCOO0OO0OOCOCOO0O

COO0OOCOOOA

OO0 OO00OH

~OOOQOOO A

OO ~~O OO

HOOOOO

Lo B B B B B I N |

QOO OOCOo

The pattern of the letter “F” is represented as :

QOO0 O0OOCOO

~OOOOOOO

OO OOOOO0O

— OO 10000

—HOOO QOO

~“~OO—HOOOO

o

QCOOOCOOO

The noise corrupted version of the pattern "F” is :

COOOOOCOCo

FOO0OO0OOOOCO

HOOOOOOO

OO OO0O0O0

COO1O—"40C0O

OO~ O0OOCO

et

[oRoRoNoNoRoNeNe]

A noisier pattern of the letter "F" is :

OO0 OCOOOCO

OO0 O0O0OOQCO0O

OO0 O00O0O0O

OO —O0OO0OO0OO0O

—AA O A0 00O0

OO ~O0OO0O0OO0

ol et e O

OO COOOoOCO

105

APPENDIX E. THE PARAMETERS FOR THE MLSE NEURAL
NETWORK

From [Ref. 3], the MLSE cost function for the time-varying channel can be written
as
Af MM
Tdhlad) = =D 2az+ Y > asda, (E-1)
i=1

I=1k=1

where s?, denotes the value of s,_, at time the /* observation, z,, is sampled. The coeffi-

cients vary with the time and in general
S,-(ﬁk # s,~(/_)k [#
and it follows that
Wy = Si(i)k # Sl(eli)i =Wy i#k

thus, the symmetry conditior which is sufficient for stability no longer holds.
The MLSE cost function can be reformulated such that the svnaptic intercon-
nections are symmetric. Consider the quadratic term of Equation E-1,
My
D) asda (E-2)

i=1k=l

Let o and § be two integers between 1 and M and assume for the moment that « # f.
Then two of the terms in the summation given by Equation E-2, one fori = o,k =

and the other fori = f,k = o, are
a, sﬁﬂ ag & ag sl(f_)a a,

respectively. Thus, for indices « and § the summation given by Equation E-2 contains

the term

()) l) 1) @ \(p
a, s,’_p ag + ag sg}_’ 4y =~ d,dy (sa(f’_p + sl(,ﬁ_)z) t 5 A (s‘(,”;, +s:_ﬁ)(E—— 3)

106

The two terms on the right side of Equation E-3 are identical. Define the modified co-

efficient s’,_, as
' 1 (0 (k)
Sick = 5 (si2e + sik) (E-4)
clearly, the modified coefficients are symmetric independent of time in the sense that

’

4 —
SI—j = Sj"l

When i = K, the modified coeflicient becomes

. 1 (0 @ i
Sioi = ?(Si—f + 52) = %

as desired. Also, using the property given by
5= S
the stationary channel case reduces to
, 1
Sice = 5 (i + Se—d) = Sik

Therefore, the MLSE cost function can be written with symmetric s°;’s in a general form

suitable for either stationary or time-varying channels as

Y M oA
Jlia,}) = —Zz 4Gz + Zzai Sk %
i=1 i=1 k=1

where the s’,_,’s are given by Equation E-4. Using the MLSE cost function for the
time-varving channel, the parameters for the MLSE neural network are given by

’ 4 ,
2Zi = li . —2s -k = - (Si(i)k + Si(—.i:) = ‘Lik y 4 = Vi(l)
107

APPENDIX F. PROGRAMMING THE MLSE NEURAL NETWORK

Using Fortran as programing language, the MLSE neural network, described in
Chapter V, was implemented with the Mainframe, and used to run some simulations for
different network parameters and different transmission channel conditions (stationary

or time-varving channel).

Cc Ferkakrerea e e de o ook e vt vt e st s e dkeak e e de v vt e vk b ake e e de e e v e dede e e de e dt b de e ek e e e e e e e e e ok ok
C deded THESIS RESEARCH Fedde
C Fodesese SIMULATION PROGRAM OF THE MLSE NEURAL NETWORK Fededede
C dededede BY M. H. KHAIDAR Fedese
Cc FedrTedrvedtrk e dedbdeve vt sk e s ek e dedede e e dededb de e st dle e v e de bbb kv de vt sk e de bk e de ek e e sk e e e
C

C Fedsdederr Yoo e et vede e de vk e e el e vl e v e vededea e e s dedede de v e v deve b dle s vt de e v ak de e dleake e e de e e b
C * THIS PROGRAM WAS MADE TO IMPLEMENT AND SIMULATE THE MLSE NEU-*
C * RAL NETWORK FOR A STATIONARY OR TIME-VARYING CHANNEL. THE PR-*
C * OGRAM FIRST WILL ASK THE OPERATOR TO ENTER THE DATA NECESSARY*
C * TO FULLY DESRIBE THE PROBLEM. THEN, THE PROGRAM IS GOING TO *
C * ASK THE OPERATOR IF THE PROGRAM IS TO BE RUN FOR A STATIONARY*
C * CHANNEL OR A TIME-VARYING CHANNEL. AFTER THE CHOICE IS MADE *
C * THE COMPUTER IS GOING TO DISPLAY THE SIMULATION RESULTS. *
o) * VARIABLE DECLARATIONS : *
C * IR(2500) = DATA SEQUENCE OF 2500 BITS OUTPUT OF THE GGUD *
C * IMSL SUBROUTINE (= A(2600)) ¥
C * M = THE NUMBER OF NEURONS IN THE NEURAL NETWORK ¥
C * INPUT TO THE PROGRAM, THIS TIME IT IS 17. *
C * MITH, MITER, INDEX, XEND, IWK(17), IER, WK(290), TOL, H=ARE*
C % THE DESCRIPTION PARAMETERS OF THE PROBLEM TO THE *
C * DIFFERENTIAL EQUATIONS SOLVER DGEAR. *
C * L = CHANNEL MEMORY IN UNITS OF T (L = 2 FOR THIS *
C * SIMULATION), INPUT TO THE PROGRAM. *
C * N = THE NUMBER OF DATA TRANSMITTED (= NR), INPUT TO *
c * THE PROGRAM. *
C * P = THE NUMBER OF DATA BITS SHIFTED INTO THE REGIST-*
C * ERS AT ONCE, INPUT TO THE PROGRAM. *
C * COUNT = THE NUMBER OF DATA BITS THAT DIFFER BETWEEN THE *
C w* TRANSMITTED DATA AND THE MLSE NEURAL NET ESTIMATED’
C * DATA OUTPUT OF THE PROGRAM.

C ¥* NUMBER THE NUMBER OF DATA THAT DIFFER BETWEEN THE MLSE *
C * NEURAL NET ESTIMATED DATA BITS AND THE DIRECT MLSE*
C * COST FUNCTION CALCULATED DATA BITS, OUTPUT OF THE *
C % PROGRAM. *
C * REG(17) = DATA BITS IN THE 17 REGISTERS. *
C * G = GAIN FACTOR OF THE NEURAL AMPLIFIERS. ¥
C * VOUT(17) = THE DATA BITS OUTPUT OF THE NEURAL AMPLIFIERS.
C * AOUT(2500) = ALL THE VOUT(17) WILL BE COLLECTED TO FORM THE*
c * HOLE ESTIMATED DATA BITS CORRESPONDING TO 2500 DA-*
C * TA BITS TRANSMITTED. *
C * IN(2500) = THE 2500 DATA POINTS GENERATED BU GGUD SUBROUTI-*
C * NE TO FORM THE SAMPLES DELTA(2500) USED TO DESCRI-*

108

oo N EoNoRoNoNoNoRoNoNoNoNONORP RO RGN NoNoNOoNO R RO RO No RO RO RO No o NG N No RO N NO RO NGO RO RO RO RO RS N @]

* BE THE TIME-VARYING CHANNEL. (BETWEEN 1 AND 21) *
* DELTA(2500) = TIME-VARYING CHANNEL COEFFICIENTS (RANGE BET-+*

* -0.1 TO 0.1). *
* R(2500) = THE 2500 GAUSSIAN NOISE SAMPLES USED TO IMPLEME-*
¥ THE PRESENCE OF NOISE IN THE CHANNELS. QUTPUT OF
* THE GGNML IMSL SUBROUTINE. *
* U(17) = THE 17 SOLUTIONS OF THE DIFFERENTIAL EQUATIONS *
* SOLVER DGEAR AND INPUTS TO THE NEURAL AMPLIFIERS. *
* T = TIME. *
* PERIOD = BIT DURATION (INVERSE OF THE DATA RATE) *
* MUL = A MULTIPLIER USED TO IMPLEMENT THE TIME-VARYING *
* CHANNEL (MUL IS VARYING TOO). *
* o V(17) = EQUALS MUL AT A CERTAIN REGISTER. *
* TNOT = TIME DURATION OF THE INTERSYMBOL INTERFERENCE. *
* NNOT = THE SINGLE SIDED SPECTRAL DENSITY OF THE ADDITI-*
* VE WHITE GAUSSIAN NOISE N(T). *
* GN(2600) = GAUSSIAN NOISE SAMPLES GENERATED BY THE GGNML *
* SUBROUTINE. *
* GNREG(17)= GAUSSIAN NOISE SAMLES INTO THE 17 REGISTERS OF *
¥ THE NEURAL NETWORK. *
* Z(17) = THE 17 OBSERVATIONS OF THE STATIONARY CHANNEL *
% CALCULATED AS DESCRIBED IN THE STUDY. *
* 0 Y(17) = THE 17 RECEIVED SAMPLES FOR A STATIONARY CHANNEL*
¥ CALCULATED AS DESCRIBED IN THE STUDY. %
* YPRIME(2500) = EQUIVALENT TO Y(17) BUT THIS TIME WHEN *
* CALCULATING FOR THE MLSE COST FUNCTION. *
* ZPRIME(2500) = EQUIVALENT TO Z(17), FOR THE MLSE COST ¥
¥ FUNCTION. ¥
* MLSECF(2500)= THE 2500 SAMPLES GENERATED BY DIRECT CALCULA-*
* TION OF THE MLSE COST FUNCTION. *
* SNR = SIGNAL-TO-NOISE RATIO (INPUT TO THE PROGRAM). *
& VPRIME(ZSOO) SAME AS V(17) BUT NOW IT'S FOR THE MLSE COST*
¥ FUNCTION. e
* DR = DATA RATE (INPUT TO THE PROGRAM, MAXIMUM 2400).

* FCN = SUBROUTINE DESCRIBING THE M DIFFERENTIAL EQUATIONSc
* FCNJ = EXTRA SUBROUTINE BUT NECESSARY. 3
* W(17,17) = THE SYNAPTIC CONNECTION MATRIX FOR THE NETWORK +*
* ACTUALLY IT'S AN M BY M MATRIX. *
* TAU = TIME CONSTANT OF THE CIRCUIT. ¥
* CURRENT(17) = THE 17 INPUT CURRENTS TO THE 17 NEURONS OF *
w THE NEURAL NETWORK. *
* VIN(17) = THE 17 DATA BITS INTO THE 17 REGISTERS OF THE

¥ NEURAL NETWORK ¥
Fedederedevededededebviedederderevedeedte ey e s de e e e v et e e dedle el e e e e e e de v e kel

INTEGER IR(2500), X, NR, A(2600), M, METH, MITER, INDEX, ANS
INTEGER IWK(17), IER, L, N, P, COUNT, SUP, MIN, NUMBER, RESP
INTEGER MAX, REG(17), G, C, D, Q, VOUT(17), AOUT(2500), IN(2500)
INTEGER DOWN, UP

REAL R(2500), U(17), WK(290), T, TOL, H, PERIOD, MUL, V(17)

REAL TNOT, NNOT, GN(2600), GNREG(17), SUM, FACTOR, DELTA(2500)
REAL SUM1, 2(17), F, S, SUM2, YPRIME(2500), Y(17), SUMS5, SUM6
REAL SUM3, ZPRIME(2500), SUM&4, MLSECF(2500), SNR, SUM7, SUMS
REAL SUM9, VPRIME(2500), DR

DOUBLE PRECISION DSEED

109

OO0

3000

1

EXTERNAL FCN, FCNJ
COMMON W(17,17), TAU, CURRENT(17), VIN(17)

FeveveTs Yo sea e e seak veak s e de Y dr ok de e st dle vk s dk e ak e ab vk v de db sk ae db e sk e v dk ek e e e ab v e e ake o st

PRINT>,' NEURAL NETWORK AS A MLSE RECEIVER'
PRINT,' == '
PRINT*,' '
PRINT*,'PLEASE, ENTER YOUR CHOICE, DO YOU WANT TO :'

PRINT 1

FORMAT(8X,'(1)',' ',"CONTINUE WITH THE PROGRAM'/
&8X,'(2)'," ','QUIT")

READ* RESP

IF(RESP.EQ. 1) THEN

GOTO 2
ELSE
GOTO 3

ENDIF

PRINT*,' '

PRINT*,' '

PRINT*, 'PLEASE, ENTER THE NUMBER OF NEURONS (M) :'

READ* ,M

PRINT*,'PLEASE, ENTER THE DATA RATE DESIRED (HZ) :'

READ",DR

PRINT*,'PLEASE, ENTER THE CHANNEL MEMORY (L) :'

READ™, L

PRINT*,'PLEASE, ENTER THE TIME CONSTANT (TAU) :'

READ*, TAU

PRINT*, "PLEASE, ENTER THE SNR (IN DB) :'

READ", SNR

PRINT*,'PLEASE, ENTER THE NUMBER OF SYMBOL TRANSMITTED (N) :'
READ™ N

PRINT®,'PLEASE, ENTER THE NO. OF SHIFTED SYMBOLS IN THE REG. (P):

READ*,P

COUNT = 0

DOWN = 1

TP =M

SUP = M

MIN =1

NUMBER = 0

MAX = M

PeseFe e e e de e e T Yo v Yoo e e Yoo e e T e Yo e s Yo ve deve e dede v e e e el S e de e e e e Yo e St de s e e Ve e

* GENERATION OF THE N DATA SEQUENCE AND THE N GAUSSIAN NOISE *
* SAMPLES AND PUTTING THE FIRST M DATA BITS AND M NOISE SAMPLES*
% INTO THE M REGISTERS OF THE NETWORK TO START THE PROCESSING.

FededededededededededededededeTe e dedededeTodedeJededede dede e dedke e dede e de oo de devedededevede e dededeve e e e Ve Ve e e de ok

PERIOD = 1 / DR

TNOT = L * PERIOD

NNOT = (3 * TNOT) / (&4 * (10 ** (SNR / 10.0)))
X =2

NR =N

DSEED = 123457.0D00

CALL GGUD(DSEED,X,NR,IR)

DO 10 I = 1, NR
IF(IR(I).EQ.2) THEN

110

aaoaooon

ACI) = -1
ELSE
A(I) = +1
ENDIF
10 CONTINUE

DSEED = 123457.0D00
CALL GGNML(DSEED,NR,R)
DO 20 I = 1, NR
GN(I) = R(I)
20 CONTINUE
DO 30 I =1, M
REG(I) = A(I)
GNREG(I) = GN(I)
30 CONTINUE
PRINT*,' '
PRINT*,' '
PRINTY, 'YOUR DATA IS NOW ENTERED, THE NETWORK IS READY TO BE'
PRINTY, 'SIMULATED. THIS PROGRAM CAN SIMULATE THE MLSE NEURAL'
PRINT*, 'NETWORK IN TWO CONDITIONS OF TRANSMISSION CHANNEL :'
PRINT™*,"' '
PRINT 5
5 FORMAT(8X,'(1)',"' ',"IN A STATIONARY CHANNEL'/
&8X,'(2)"," ',"IN A TIME-VARYING CHANNEL')
PRINT*,' '
PRINT®, 'PLEASE, ENTER YOUR CHOICE :'
READ*,ANS
PRINT*,' '
PRINT*,' '
PRINT 12
12 FORMAT(12X,'PROCESSING IN PROGRESS PLEASE WAIT')
PRINT=," '
PRINT*," '
IF(ANS.EQ. 1) THEN
GOTO 200
ELSE
GOTO 500
ENDIF

.................................
ey

200 DO 40 I = 1, M

DO SO K =1, M
FACTOR = (I - K) * PERIOD
SUM = SUM + REG(K) * F(FACTOR,TNOT)
50 CONTINUE
Y(I) = SUM + GNREG(I)
40 CONTINUE
DO 60 I =1, M
SUM1 = 0
DO 70 K =1, M
FACTOR = (K - I) * PERIOD
SUM1 = SUM1 + Y(K) * F(FACTOR,TNOT)
70 CONTINUE

111

QOO0

60

100

310

320

340

330

360

460

Z2(I) = suMm
CONTINUE
Do o1 =1, M
CURRENT(I) = 2 * Z(1I)
VIN(I) = REG(I)
DO 100 K =1, M

FACTOR = (I - K) * PERIOD
W(I,K) = -2 * S(FACTOR,TNOT,NNOT)
CONTINUE
CONTINUE
GOTO 1000

ek et FedeTesk s e sk e vt ok s v v sk b v a s e ak b e v e de s ke e ek e de e deot s e s sk e e s sl e v st o st vl ek o

* SIMULATION OF MLSE NEURAL NETWORK IN A TIME-VARYING CHANNEL *
Fe ekt ab o seat e Yo ab Te T b e e s aab e e T e vk sk St e e e e vk e e v T e v s e e b e ek s ek ok

NB = 21
NR = N
DSEED = 123457.0D0
CALL GGUD(DSEED,NB,NR, IN)
DO 31C I = 1, MR
IFCINCI).GE. 1. AND. IN(I).LT. 11) THEN
DELTA(I) = -IN(I) / 100.0
ELSEIF(IN(I).GE.11.AND. IN(I).LT.21) THEN
DELTA(I) = (IN(I) - 10) / 100.0

ELSE

DELTA(I) 0
ENDIF
CONTINUE
K=1
DO 320 I DOWN , UP
(= DELTA(I) + 0.9

K)
=K+1

‘7
K
CONTINUE
DOWN = DOWN + M
UP = UP + M
IF(UP.GE.N) UP = N
DO 330 I =1, M
SUM5 = 0
DO 340 K=1, M
FACTOR = (I
MUL = V(K)
SUM5 = SUM5 + REG(K) * FPRIME(FACTOR,TNOT,MUL)
CONTINUE
Y(I) = SUM5 + GNREG(I)
CONTINUE
DO 460 I =1 , M
SUM6 = 0
DO 360 K =1, M
FACTOR = (K - I) * PERIOD

K) * PERIOD

MUL = V(K)
SUM6 = SUM6 + Y(K) * FPRIME(FACTOR,TNOT,MUL)
CONTINUE
Z(I) = SUMé

CONTINUE
DO 370 I =1, M

aOOoOoOoaoaon aaooaoaan

OO an

380
370
1000

80

13

110

111

CURRENT(I) = 2 * Z(I)
VIN(I) = REG{I)
DO 380 K=1, M
FACTOR = (I - K) * PERIOD
MUL = V(K)
W(I,K) = -2 % SPRIME(FAGTOR,TNOT,NNOT,MUL)

CONTINUE
CONTINUE
G = 10000
T=20.0
DO 80 I =1, M
Uu(I) =
CONTINUE

TOL = 0.00001
H = 0.000001
MITER = 0

METH = 1

INDEX = 1

XEND = 5 * TAU

Fedle 2y T e e Y e S e T e Y Y ek e b e vt v e vk b v sk e ve e e s vk sk de e e sk e b e e el e s e e e e

e AFTER DOING SOME CALCULATIONS NOW WE ARE READY TO CALL DGEAR *
** THE DIFFERENTIAL EQLATIOVS SOLVER TO SOLVE OUR M EQUATIONS. *

T e e e e e e Y e Y e Ve vl Y e e a e d e v Y e v a Ye v de s s e v sk dedle ve s venk ve e ve e S Yo e v s v dle st

CALL DGEAR(M,FCN,FCNJ,T,H,U,XEND,TOL,METH,MITER, INDEX, IWK,WK, IER)
IF(IER. GT. 128) THEN
PRINT 13,IER

FORMAT(/,' WARNING !!!!!. . . IER = ',15)
GOTC 3
ENDIF
VYT Y Skt e ve e S e ve e vk v dene v s v S e vt o el sealeve de ek e e v e sk e ve e v s v e vk vk e s se e vl et

Trr OUTPUT OF DGEAR, SOLUTIONS TO OUR M DIFFERENTIAL EQUATIONS*
ARE PASSED THROUGH THE M NEURAL AMPLIFIERS TO GET THE MLSE NEU
‘RAL NETWORK ESTIMATES OF THE M DATA BITS THAT ARE IN THE M REG*
isTEQQ i

................................... o ufaats lante e lonte aleate ale ole alonle ale ate aleal.
et i it e T S S ot o i}

DO 110 I =1, M
VOUT(I) = -TANH(G * U(I))
CONTINLUE
bo 111 I =1, M
IF(REG(I).EQ.0) VOUT(I) =

CONTINUE

Sevede Yo Yot Ye dede et e B deden e de e e denit deve e e de ook de e de e edede e dedede S dedededede st de de fede e dedede dese e
HERE THE DATA BITS OUTPUTS OF THE NEURAL AMPLIFIERS ARE COLLE-+
CTED SO THAT LATER WE ARE GOING TO KAVE THE HOLE 2500 ESTIMATE

*S OF THE 2500 DATA BITS TRANSMITTED. *
FeledededededededeVed Ve Yedededeve Ve e dede Ve de oo e e dedede Yo e e e ve e S de e de e e e de de dedede e de Yoo dede e dede dedede e e

IF(MAX. EQ. M) THEN
K =1
DO 115 J = -
VOUT(J)

113

aOaOoOaoaoaoan

115

116

118

117

120

166

130

CONTINUE
ELSEIF(MAX. NE.N) THEN
DO 116 J = M-P , M-1
AQUT(K) = VOUT(J)
K=K+1
CONTINUE
ELSEIF(MAX. EQ.N) THEN
MPRIME =M - P
DO 118 I =M , 1 -1

3 b
IF(REG(I).EQ.0) THEN
M=M-1
ENDIF
CONTINUE

IF(M.GT. MPRIME) THEN
DO 117 J = MPRIME , M
AQUT(K) = VOUT(J)
K=K+1
CONTINUE
ENDIF
ENDIF

Felrdevede Yo dede s v dkdedkdle sk dl sk s v s ek e ved e e e vt ek e v sl v s b Yo s sk e e e e Fevb e e e vk e e e o e e s e e ok

*HERE, THE ESTIMATES FROM NEURONS L+1 THROUGH M-1 ARE TAKEN AS *
VALID. THEN A COMPARISON BETWEEN THESE ESTIMATES AND THEIR COR¥
*RESPONDING IN THE REGISTERS I.E. THE INPUT DATA BITS IS MADE
*AND THE RESULT IS RECORDED FOR LATER USE. %

Fefeseve oY et dtacdrve s e dede e e e b s v ve e dle v dbdlede ve b e v v e s e v de vt ake e s e e e s e e sk de e ake e e e o

C=L+1
D=M-1
IF(MAX. EQ. M) THEN

DO 120 I =1, M
IF(VIN(I).NE.VOUT(I)) THEN
COUNT = COUNT + 1
ENDIF
CONTINUE
ELSEIF(MAX. EQ.N) THEN
DO 165 I =M, 1, -1
IF(REG(I).EQ.0) THEN
M=M-1
ENDIF
CONTINUE
DO 166 1 =C, M
IF(VIN(I).NE.VOUT(I)) THEN
COUNT = COUNT + 1
ENDIF
CONTINUE
ELSE
DO 130 T =C, D
IF(VIN(I).NE.VOUT(I)) THEN
COUNT = COUNT + 1
ENDIF
CONTINUE
ENDIF

Fedevedededededededeedodededededede dode dedodededevedededededevedodedededededededede s

114

C *HERE, THE DATA BITS IN THE REGISTERS FROM 1 TO P ARE NULLED *
C *THEN THE CONTENT OF THE SHIFT REGISTERS ARE SHIFTED TO THE RIG™*
C *HT TILL THE CONTENT OF REGISTER 1 IS NONZERO. THEN, WE ARE FEE*
C *DING THE P EMPTY REGISTERS BY THE NEXT P DATA BITS OF THE TRAN:
C *SMITTED SEQUENCE FOR ANOTHER PROCESSING CYCLE. *
C Federsyedeasevevedededlyr skt v deat e arseaab ekt ek s a bk ab s a vk s et s st s ok e e ab ek e de e db de e v vk ek e e v
C
DO 140 1 =1, P
REG(I) = 0
GNREG(I) =0
140 CONTINUE

Q=1
150 IF(Q.LE.M) THEN
IF((P+Q).LE.M) THEN
REG(Q) = REG(P+Q)
GNREG(Q) = GNREG(P+Q)
ELSE
REG(Q) =
GNREG(Q)
ENDIF
Q=Q+1
GOTO 150
ENDIF
155 IF(MAX.EQ.N) THEN
PRINT*, 'THE NUMBER OF ERROR DATA BETWEEN THE TRANSMITTED'
PRINT*, 'BINARY SEQUENCE AND THE MLSE NEURAL NET OUTPUT'
PRINT*, 'DATA IS :'
PRINT*,"' '
PRINT 270, COUNT
270 FORMAT(2X, 'COUNT =',2X,I5)
GOTO 2000
ENDIF
DO 160 I =1, M
IF(REG(I).EQ.0) THEN
MAX = MAX + 1
IF(MAX. GT.N) THEN
A(MAX) = 0
GN(MAX) = 0
ENDIF
REG(I) = A(MAX)
GNREG(I) = GN(MAX)
ENDIF
160 CONTINUE
IF(MAX. GT.N) THEN
MAX = N
ENDIF
IF(ANS.EQ. 1) THEN
30TO 200

[

ELSE
GOTO 500
ENDIF
2000 IF(ANS.NE.1) THEN
GOTO 300
ENDIF

C JevededededededevtedelsYedee e dedededededede dedede dededededente dediede dede e dedede dededede dede e de v de e v de dede e Ve e e e e e e

115

aagaaaaa

700

190

180

240

230

260
250

300

470

410

390

430

420

*AFTER, THE MLSE NEURAL NETWORK HAS ESTIMATED THE N DATA BITS *
*TRANSMITTED, WE ARE NOW GOING TO START CALCULATING THE DIRECT *
*MLSE COST FUNCTION ESTIMATES OF THE N TRANSMITTED DATA BITS *
THEN, WE ARE GOING TO MAKE A COMPARISON BETWEEN THE TWO ESTIMA¥

*TES AND RECORD THE RESULT. o
e rere o Y Yo v S ook Yo dk ok et e e e ak e Yo v e ek e de e b A vt ab e vk gk de s sk vk de s sk e st de de v v e ek s e ookt

DO 180 I = MIN, SUP
SUM2 = 0
DO 190 K = MIN, SUP
FACTOR = (I - K) * PERIOD
SUM2 = SUM2 + A(K) * F(FACTOR,TNOT)

CONTINUE

YPRIME(I) = SUM2 + GN(I)
CONTINUE
DO 230 I = MIN, SUP

SUM3 = 0

DO 240 K = MIN, SUP
FACTOR = (K - I) * PERIOD
SUM3 = SUM3 + YPRIME(K) * F(FACTOR,TNOT)

CONTINUE
ZPRIME(I) = SUM3
CONTINUE
DO 250 I = MIN, SUP
SUM4 = 0

DO 260 K= MIN, SUP
FACTOR = (I - K) * PERIOD
SUM4 = SUM& + A(I) * S(FACTOR,TNOT,NNOT) * A(K)
CONTINUE
MLSECF(I) = 2 * A(I) * ZPRIME(I) - SUM&
CONTINUE
GOTO 350
J=1
DO 470 I = MIN , SUP
VPRIME(I) = V(J)

J=J+1
CONTINUE
DO 392 I = MIN , SUP
StM7 = 0

DO 410 K = MIN , SUP
FACTOR = (I - K) * PERIOD
MUL = VPRIME(K)
SUM7 = SUM7 + A(K) * FPRIME(FACTOR,TNOT,MUL)

CONTINUE

YPRIME(I) = SUM7 + GN(I)
CONTINUE
PO 420 I = MIN , SUP

SUM8 = 0

DO 430 K = MIN , SUP
FACTOR = (K - I) * PERIOD
MUL = VPRIME(K)
SUMS = SUM8 + YPRIME(K) * FPRIME(FACTOR,TNOT,MUL)
CONTINUE
ZPRIME(I) = SUMS
CONTINUE
DO 440 I = MIN , SUP

116

OO0

aan

450

440
350

400

280

290

SUM9 = 0
DO 450 K = MIN , SUP

FACTOR = (I - K) * PERIOD

MUL = VPRIME(K)

SUM9 = SUM9 + A(I)*SPRIME(FACTOR,TNOT,NNOT,MUL)*A(K)

CONTINUE

MLSECF(I) = 2 * A(I) * ZPRIME(I) - SUM9
CONTINUE
IF(SUP.EQ.N) GOTO 400

MIN = MIN + M
SUP = SUP + M
IF(SUP. GT.N) THEN
SUP = N

ENDIF
IF(ANS.EQ. 1) THEN

GOTO 700
ELSE

GOTO 300
ENDIF
DO 280 I =1I, N

IF(ANUT(I).NE.MLSECF(I)) THEN

NUMBER = NUMBER + 1

ENDIF
CONTINUE
PRINT*,'THE NUMBER OF ERROR DATA BETWEEN THE TRANSMITTED'
PRINT*,'BINARY SEQUENCE OF DATA AND DATA DIRECTLY GENERATED'
PRINT*,'BY THE MLSE COST FUNCTION :'
PRINT*,' '
PRINT 29C,NUMBER
FORMAT(2X, 'NUMBER =',4X,1I5)
GOTO 3600
STOP
END

Yesedesededevevedede sl e ey skt e ve ok s vkl abale de v de de v e vk de v sk sk s sk sk s sk Ak vk vt dle s sl ake v v s de ve sk sk ek e

HERE IS THE SUBROUTINE CORRESONDING TO THE TRANSMISSION CHANNE:
L IMPULSE RESPONSE WHICH IS MODELED BY A FINITE RESPONSE SQUAR¥
ED COSINE FUNCTION. THIS FUNCTION IS IMPLEMENTING THE STATIONA
*RY CHANNEL. *

oes's eSededesededededede e deede e dede e dodede e de e deve e e e e e e e e e de de e e de e e e Yo de e e Ve e e e

FUNCTION F(FACTOR,TNOT)
REAL FACTOR
REAL F, TNOT, PI, SUP
PI = 3.1415927
SUP = TNOT / 2.0
IF(ABS(FACTOR). LE. SUP) THEN
F = (COS(PI *FACTOR / TNOT)) ** 2
ELSE
F=0
ENDIF
RETURN
END

Yevedeskal sl s vt s vevede s vl desk e v v dede ek ab sk de A e e de e v sk b v v s akab ok sk sk s e de s ek ve s v vl vk sk vkt
*HERE IS THE COMBINED RESPONSE OF THE CHANNEL AND MATCHED ¥

117

aann

aaoaoaooa

[oNo NN NeNS]

220

210

*FILTER. THIS FUNCTION IS IMPLEMENTING THE STATIONARY CHANNEL. *
FeTede Yoot Rt vb sk e vk ek e etk de v b de e e d b dede s e de e v dke s e v de e vt e s e de b e e dle vt e v

FUNCTION S(FACTOR,TNOT,NNOT)
REAL FACTOR, S, TNOT, NNOT, PI
PI = 3.1415927
IF(ABS(FACTOR). LE. TNOT) THEN
S = (1 / (2 * NNOT)) * ((TNOT - ABS(FACTOR))

* (1 4+ 0.5 % COS(2 * PI * FACTOR / TNOT))
+ (3 * TNOT / 4.0) * SIN (2 * PI * ABS(FACTOR) * TNOT))
ELSE
S=0
ENDIF
RETURN
END

FeTederedkak sk e et Tk akalak b s Fe v Sk vk vk sk ake ek b s de e v v e vk s sk sk e e de e de e de e e e e ekl e dedeale e e e

HERE ARE THE SET OF DIFFERENTIAL EQUATIONS DESCRIBING THE DYNA¥

*MICS OF THE NEURAL NETWORK. *
Fedevrvede e drTe T Yoo e v st ks b sk dese se vl d sk de sk ab s s sk e e vk e e vk s e e v de ek e de Ve sk e e e e oo

SUBROUTINE FCN(M,T,U,UPRIME)
INTEGER M
REAL U(M), UPRIME(M), T, SOM
COMMON W(17,17), TAU, CURRENT(17), VIN(17)
DO 210 I = 1, M

SOM =0

DO 220 K =1, M

SOM = SOM + W(I,K) * VIN(K)

CONTINUE

UPRIME(I) = SOM - (U(I) / TAU) + CURRENT(L)
CONTINUE
RETURN
END
YeseTeTe e Yr Yo veTe Yo v ek Yo v T e e Yo de sk e Yo v e v v e e vk vk alese ke dede e s ek vk sk sk e sk sk ke e e e e e b s Se e s ealeake
SUBROUTINE FCNJ(M,T,U,PD)
INTEGER M
REAL U(M), PD(M,M), T
RETURN
END

Sevedededededededede e dededede e de dedededededededededededededededededede dededededede ke

SAME AS FOR THE FUNCTION F ONLY THIS TIME IS FOR THE TIME-VARY

*ING CHANNEL. ¥
FTedr e e e e veTeve sk vedk Fe v e v v sedlealedl ek e v e e e e ve st sk abaleake e de e e v de e v e v skl e ke e de e e e e e e

FUNCTION FPRIME(FACTOR,TNOT,MUL)
REAL FACTOR
REAL FPRIME, TNOT, PI, SUP, MUL
PI = 3.1415927
SUP = TNOT / 2.0
IF(ABS(FACTOR). LE. SUP) THEN
FPRIME = MUL * ((COS(PI *FACTOR / TNOT)) *¥ 2)
ELSE
FPRIME
ENDIF

0

118

=

oRoNoNoNONe

RETURN
END

Fevkseve et al s v s abdbabal vl e de de b b e vk sk ke e e s Ye v v s v vt dbeae sk e e st e de v vt e sk e vk v v sk v ek e ook

*SAME AS BEFORE (FOR THE FUNCTION S) ONLY THIS TIME IT IS FOR *

*THE TIME-VARYING CHANNEL. *
FeTe ek e e e b vk v v vkl sl dl e Ve ve v vt e ak ok ok dkeab e e d v s s S g st ab aba ke s o s e S de s de e e st dle dle e e e e e e e

FUNCTION SPRIME(FACTOR,TNOT,NNOT,MUL)
REAL FACTOR, SPRIME, TNOT, NNOT, PI, MUL
PI = 3.1415927
IF(ABS(FACTOR). LE. TNOT) THEN
SPRIME = ((MUL ** 2) / (2 * NNOT)) * ((TNOT - ABS(FACTOR))

& * (1 + 0.5 % COS(2 * PI * FACTOR / TNOT))
& + (3 * TNOT / 4.0) * SIN (2 * PI * ABS(FACTOR) * TNOT))
ELSE
SPRIME = 0
ENDIF
RETURN
END
119

n

)

LIST OF REFERENCES

DARPA, Neural Nerwork Study, AFCEA International Press, November 1988.

Lippmann, Richard P., “An Introduction to Computing With Neural Nets.” /EEE,
ASSP Magazine, pp. 4-22, April 1987.

Provence, John D., “Neural Network Implementation for Maximum-Likelihood
Sequence Estimation of Binary Signals in Gaussian Noise,” /1987 IEEE Interna-
tional Conference On Neural Networks, Vol. 3, pp. 703-714.

Lippmann, R. P., Gold, B. and Malpass, M. L., “A Comparison of Hamming and
Hopfield Neural Nets for Pattern Classification,” Technical Report No. AD-A1S82
255, MTI, 21 May 1987.

Arbib, Michael A., Brains, Machines and Mathematics, Springer- Verlag, 1987.

Denker, John S., Neural Nerworks for Computing, AIP Conference Proceedings 151,
Snowbird, UT, 1986.

Grossberg, S., "Adaptive Pattern Classification and Universal Recording: Feedback,
Expectation, Olfaction, and Illusions,” Biological Cybernerics, Vol. 23, pp. 187-202,
1976.

Gottfried, Ungerboeck, “Adaptive Maximum-Likelihood Receiver for Carrier-
Modulated Data-transmission Systems,” IEEE Transactions on Communications,
Vol. COM-22, pp. 624-636, May 1974,

Proakis, John G., Digital Communications, pp. 351-352, pp. 394-412, McGraw-Hill,
1983.

Hopfield, J. J. and Tank, D. W., "Neural Computation of Decisions in Optimization
Problems,” Biological Cybernetics, Vol. 32, Springer-Verlag, pp. 141-152, 1985.

1.

Gottfried, Ungerboeck, "Nonlinear Equalization of Binary Signals in Gaussian
Noise.,” [EEE Transactions on Communications Theory, Vol. COM-19, pp.
1128-1137, Dec 1971.

Carpenter, Gail A. and Grossberg S., “A Massively Parallel Architecture For a
Self-Organizing Neural Pattern Recognition Machine,” Computer Vision, Graphics
and Image Processing, Vol. 37, pp. 54-115, 1987.

0.

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library. Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code 62

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterev, CA 93943-5000

Professor Tri T. Ha. Code 62Ha

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-3000

Professor R. Janaswamy. Code 62]Js

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey. CA 93943 5000

Etat Major de la Marine Rovale
Division du Personnel et d'Instruction
Rabat MOROCCO

Ecole Rovale Navale
Librairie
Casablanca 0! ' MOROCCO

Mohamed Hassan Khaidar
Rue Souissi, No. 2

Si1di Amar Lahcini

Meknes - MOROCCO

Shu Shih Ming

SMC 2156

Naval Postgraduate School
Monterey, CA 93943-5000

Al Metlaq Issam

SMC 1619

Naval Postgraduate School
Montereyv, CA 93943-5000

No. Copies
2

